تالارهای پادشاه ایرانی

بازگشت   تالارهای پادشاه ایرانی > علمی فرهنگی > علوم ریاضی و فنی > مهندسی عمران

مهندسی عمران تمامی مباحث عمران در اینجا

گفتگو قفل شد
 
ابزارهای تاپیک جستجوی این تاپیک

  #31  
قدیمی 04/02/2010
آواتار Alireza_Mahan23
Alireza_Mahan23 Alireza_Mahan23 آفلاین است
معاون کل تالار

مدال افتخار پادشاه ایرانی مدیر نمونه ماه مدیر نمونه ماه 

 

نام: عليرضا
جنسيت: مرد
شغل: مهندس عمران
محل سکونت: ایران-مشهد
مدرک تحصيلی: کارشناسی ارشد
پست: 19,266
سپاس: 6,580
از این کاربر 13,537 بار در 7,962 پست سپاسگزاری شده
اعتراض ها: 4
به این کاربر 8 بار در 8 پست اعتراض شده
چوب: 7,359,241
ارسال پیغام Yahoo به Alireza_Mahan23
مقاله کامل بهسـازی و مقـاوم سـازی پلهـا:

بازرسی فنی منظم پلها جهت حصول اطمینان از ایمنی سازه ای آنها از جمله مسایل مهم در حوزه مدیریت یکپارچه پلها می باشد. نظر به عملکرد ویژه پل ها در عبور ترافیک از روی رودخانه ها، مسیل ها و کاهش معضلات ترافیکی تقاطع های شهری پر ازدحام، بروز مشکلات فنی و در موارد خاص ریزش پل ها خسارات جانی و مالی فراوانی به دنبال خواهد داشت. افزون بر این، قابلیت استفاده بی وقفه از پلها در حین و پس از وقوع بلایای طبیعی، زمانی که عملیات امداد نجات باید با حداکثر سرعت ممکن صورت گیرد، اهمیتی دو چندان می یابد.
چنان که در این مقاله ارائه می گردد، فاجعه فرو ریزش پل I-35W در ایالت مینستوتا در ایالات متحده امریکا محصول بی توجهی به نتایج بازرسی های فنی و گزارشات آسیب پذیری سازه ای این پل می باشد. نتایج مطالعات اخیر در خصوص نقصهای سازه ای احتمالی ناشی از ترکهای خستگی به بهسازی و مقاوم سازی پل نیانجامید. همچنین، مقاله به بیان چگونگی تسریع فرآیند بازرسی، بهسازی و مقاوم سازی پل های امریکا، انجام برآوردهای دقیق تر هزینه این پروژه ها و تحلیل سود و زیان آنها پس از فرو ریزش پل می پردازد. بر مبنای تجارب حاصله و اطلاعات گردآوری شده در ارتباط با حادثه فرو ریزش پل I-35W، آخرین آمار رسمی پل های ایران و نیز هزینه متوسط بازسازی و ساخت مجدد پل ها، ارزیابی کلی از وضیعت پل های مختلف شهری و برون شهری ایران صورت می گیرد و با بهره گیری از اطلاعات چندین پروژه مقاوم سازی پل تخمینی از هزینه مقاوم سازی پل های کشور ارائه می گردد.
1- مقدمه زمانی که از بهسازی و مقاوم سازی پل ها و به طور کلی ابنیه فنی راه و راه آهن در برابر بلایای طبیعی و بارهای سرویس سخن به میان می آید اغلب نگاه ها متوجه مبحث بازرسی فنی و گزارشات آسیب پذیری می شود. هر چند مبحث بازرسی فنی و گردآوری اطلاعات مقدمه فرآیند مدیریت یکپارچه پل ها می باشد لیکن در حوزه های عملی و اصولاً سیستم پایه مدیریت پل این بخش تنها بخشی از سیستم محسوب می شود که اتفاقاً نسبت به راهبردهای نگهداری کاملاً حساس و تغییر پذیر است.
به عبارتی همانگونه که از دیدگاه فن مدیریت اطلاعات یکپارچگی و انسجام اطلاعات در اولویت می باشد و یا در جمع آوری و ساماندهی اطلاعات شبکه های شریان های حیاتی، عکس العمل های وابسته آنها را نیز باید مدنظر قرار داد از نگاه مدیریت پل نیز نوع و روش بازرسی متأثر از سیاست کلی معیار ایمنی است.
لزوم توجه به بهسازی و مقاوم سازی پل ها به عنوان یکی از عمده ترین سرمایه ها در شبکه های ریلی و جاده ای از دو جنبه مورد توجه است. ابتدا همین ارزش سرمایه ای ابنیه موجود و دوم عملکرد شریان های حیاتی در هنگام بروز بلایای طبیعی و شرایط جنگی است. در این خصوص جمع آوری، سازماندهی و تحلیل صحیح اطلاعات ابزار مناسب و لازم مدیران بهره بردار و بحران خواهد بود.
با توجه به اهمیت بهسازی و عدم کفایت صرف بازرسی های فنی و تحلیل داده ها ابتدا استراتژی های نگهداری در چارچوب سیستم مدیریت پل تشریح می شود و به عنوان شاهدی بر فاجعه آمیز بودن سیاست "نگهداری عکس العملی"1 پل ها فروریزش پل I-35W مورد ارزیابی قرار گرفته است. در پایان نیز از جنبه سیاستگذاری کلان اقتصادی و ایمنی آماری رسمی از پل های موجود کشور با چند پروژه بهسازی پل قیاس می شود تا تخمینی از حجم و هزینه نگهداری استاندارد آنها حاصل شود.
2- استراتژی نگهداری در سیستم مدیریت پل
استراتژی نگهداری هر چند به عنوان مرحله ای از مراحل مختلف سیستم مدیریت پل مطرح است لیکن به جهت اهمیت و اثرگذاری بقیه بخش های سیستم را تحت تأثیر قرار می دهد. در میان مراحل گردآوری مستندات، بازرسی، نگهداری، مالی، مدیریت و پایگاه پردازش داده ها بازرسی رابطه مستقیم و دو طرفه مشهودتری با راهبرد نگهــداری دارد. به عـبارتی نتایج حاصل از عملیات بازرسی به درک مناسب تر و تدوین راهبرد متناسب کمک می کند و در عین حال از حیث شیوه، دامنه بازرسی و دوره های زمانی تکرار متأثر از آن است.
در راستای حفظ معیار ایمنی بر اساس (DECD 1976) دو راهبرد کلی "نگهداری عکس العملی" و "بازرسی سیستماتیک" تعریف می شود. روش اول به عنوان راهکار مدیریت بحران بازرسی ها را به اعضای اصلی و در سحطی محدود تعریف می کند در حالی که روش دوم یک روش پیشگیرانه محسوب شده در دوره های زمانی کوتاه تر ارزیابی و بازرسی کلی سازه را مورد توجه قرار می دهد .
هر چند تفهیم منافع مالی مدیریت و نگهداری صحیح پل ناشی از کاهش هزینه های آتی، عملکرد مناسب در شرایط بحرانی (بلایای طبیعی و نظامی) و کاهش سوانح رانندگی جهت اخذ سرمایه های بیشتر از مدیران چندان آسان نیست لیکن راهبرد عکس العملی ریسک بالایی برای مردم و استفاده کنندگان پل ها در برخواهد داشت. در راستای ایجاد تعامل بیشتر و ترسیم اهمیت راهبردهای پیشگیرانه، سیستم های پیچیده تری از مدیریت پل قابل بهره برداری هستند که در آن بر اساس نگارش یک سناریوی "چه می شود- اگر"1 تبعات و خسارات خرابی پل به هنگام شرایط اضطراری بیان شده با تخمینی از زمان بازسازی، تبعات سیاسی و منابع مالی و انسانی می توان مدیران و تصمیم گیران را نسبت به پیاده سازی خروجی سیستم ترغیب نمود.
سیستم مدیریت پل زمانی مؤثر خواهد بود که تمام ارکان ها به درستی پیاده شود. کارشناسان و مدیران پل از یک سو باید در گزارشات خود، نتایج را کاملاً شفاف و جامع ارائه کنند و از سویی دیگر دست اندرکاران و بهره برداران، التزامی عملی نسبت به پیاده سازی و تخصیص منابع آن داشته باشد.
برای تأثیر گذاری سیستم مدیریت پل باید تمامی اطلاعات لازم به عنوان ورودی در اختیار آن قرار گیرد. در مقابل این ورودی با تعامل اجزای2 BMS می تـوان خروجی شفافـی شـامل یک زمـان بندی محدود ارائه نمود. این زمان بندی محدود در حقیقت همان بعد الزام آور عمل به راهکارهای نگهداری است. براساس این خروجی پل های معیوب بر اساس نیاز تعمیرات طبقه بندی و با اولویت بندی روش های نگهداری از هیچ کار تا تخریب کامل و بازسازی پل راهکار ارائه می گردد.
همانگونه که اشاره شد این راهبرد یا خروجی سیستم در ارتباطی تنگاتنگ با مرحله بازرسی پل است از جمله فرآیندهای ضروری بازرسی پل به عنوان یک فعالیت کاملاً تخصصی تهیه اطلاعاتی برای انتخاب یک راهبرد نگهداری مناسب و تعیین نقاط بالقوه معیوب است که همچنان شفافیت و وضوح اطلاعات ثبتی مورد تأکید است.
در یک سیستم موفق پل که اطلاعات پردازش شده بازرسی و روش های نگهداری و تعمیر تدوین شده آن توسط یک الگوریتم مدوم حاوی پیشنهاداتی از صرف بودجه و برنامه ریزی استراتژی بلند مدت نگهداری باشد مرحله مدیریت جایگاه اصلی سیستم است. این مهم به ویژگی های منحصر به فرد هر پل و عوامل متعدد تأثیر گذار بر آن بازمی گردد که علیرغم طراحی آن الگوریتم مدون حضور مدیر تصمیم گیر برای اولویت بندی ها و کارشناس خبره جهت قضاوت های مهندسی را کمرنگ نمی کند.
3- معرفی پل I-35W
پروژه ساخت پل I-35W بر روی رودخانه می سی سی پی در ایالت مینستوتا (Minnesota) در ایالات متحده در سال 1964 آغاز و برای احداث آن مبلغ 5269002 دلار هزینه شد. خرپای فولادی پل متشکل از سه بخش بود؛ عرشه، روسازه و زیر سازه. پل I-35W در ماه نوامبر سال 1967 با سه محور عبوری در هر جهت به بهره برداری رسید. در سال 1988 یک محور عبوری دیگر در هر جهت به پل اضافه شد تا تغییرات ترافیکی حاصل از احداث راههای مختلف در دو طرف پل کنترل گردد. بدین ترتیب عرشه پل در هر دو جهت دارای درزی طولی موازی با امتداد عبور ترافیک بود.
طول این پل چهارده دهانه 581 متر و عرض آن 34 متر بوده است. دهانه های ورودی جنوبی (دهانه های 1تا5) از شاهتیرهای فولادی و دهانه های اصلی پل (دهانه های 6 تا 8) از خرپاهای فولادی عرشه ساخته شده بودند. دهانه های ورودی شمالی نیز از شاه تیرهای فولادی (دهانه های 9 تا 11) و دال بتنی (دهانه های (12 تا 14) تشکیل یا فته بودند. عرشه پل به مساحت تقریبی 2m 19754 دارای هشت خط عبوری (4 خط رفت و 4 جهت برگشت) و ارتفاع تراز زیر پل از تراز متوسط سطح آب می سی سی پی 19.6 متر بود. براساس آمار سال 2004 اداره راه و ترابری ایالت مینستوتا به طور متوسط روزانه 141000 خودرو از پل عبور می کرده است.
بارهای ترافیکی به دو خرپای فولادی به موازات امتداد ترافیک منتقل می شدند که طول این خرپاهای متقارن در دهانه های 6 و 8 به 81 متر می رسید. از جمله موارد منحصر به فرد در مورد این سازه استفاده از قوس های فولادی 140 متری در دهانه هفتم بوده است. خرپاهای این دهانه از اعضای جوش شده ساخته شده بود که ارتفاع تقریبی آن در کنار پایه های واقع در حاشیه رودخانه به 5. 18 متر می رسید. دو خرپای موازی امتداد عبور ترافیک به وسیله تیرهای خرپایی جوش شده جانبی کف به عمق تقریبی 7. 3 متر و تراورس های فولادی جاده روی پل به طول 85 سانتیمتر به هم متصل شده بودند. این تراورس های موازی بار عرشه و بارهای ترافیکی را به تیر خرپایی کف منتقل می نمودند. سیستم سازه ای فوق به دلیل کارکرد می سی سی پی به عنوان یک شاهراه آبی ترانزیت کالا و عدم امکان احداث پایه در رودخانه مورد استفاده قرار گرفته بود.
پل I-35W در ساعت 6:05 بعد از ظهر روز اول آگوست سال جاری میلادی به طور کامل به داخل آب های می سی سی پی فرو ریخت. در هنگام ریزش عملیات ترمیم آسفالت روسازه پل در جریان و دو محور در هر جهت مسدود و مطابق برنامه ریزی های صورت گرفته جایگزینی و نوسازی پل برای سال 2025-2020 برنامه ریزی شده بود. در خلال ریزش قسمت جنوبی پل رفتار سازه ای متفاوتی از خود بروز داد. این قسمت قریب به 15 متر به طرف شرق تغییر مکان داده در حالی که بقیه قسمت های پل به صورت درجا فرو ریخته است .
4- پیشینه بازرسی های پل I-35W
در سال 2001 به دنبال ظهور آثار خستگی که عمدتاً در نتیجه اعوجاج پیش بینی نشده تیر ورق ها به وجود آمده بود، تحقیقاتی از سوی دانشگاه مینستوتا بر روی این پل انجام گرفت. نگرانی از بروز خستگی در سیستم خرپایی اصلی (سیستم خرپای کف پل) کارشناسان را مجبور به مطالعه کلیه ترک های سیستم خرپای عرشه نمود. تنش های محاسبه شده در بسیاری از جزئیات سازه ای پل از جمله سخت کننده های جوش شده طولی، سخت کننده جوش شده به صفحات داخل اعضای کششی و لقمه ها از تنش آستانه خستگی بیشتر بودند. بر مبنای این مطالعات ترک های مشاهده شده در سیستم سازه ای پل به پدیده خستگی بی ارتباط دانسته شد. افزون بر این، نتایج مدل سازی ها احتمال بروز ترک های ناشی از خستگی را در طول عمر بهره برداری پل مردود دانست. شایان ذکر است مطالعات مذکور بر پایه عبور 15000 خودرو در روز انجام گرفت.
نکته شایان تامل در مورد نتایج این تحقیقات این است که تنش های محاسبه شده برای پل در این پژوهش از تنش آستانه خستگی بار زنده آئین نامه AASHTO بیشتر بود اما با این منطق که شرایط موجود در AASHTO ممکن است در طول عمر بهره برداری دفعات اندکی اتفاق بیفتد و با توجه به کمتر بودن چشمگیر مقادیر تنش اندازه گیری شده از تنش آستانه خستگی بار زنده آئین نامه AASHTO امکان بروز پدیده خستگی در پل مزبور مردود دانسته شد. این در حالیست که ریزش پل I-35W در ساعت اوج ترافیک روی داد و در لحظه ریزش پل ترافیک بسیار سنگینی بر روی پل در جریان بود. در پایان مطالعات، پیشنهاد شد پل هر شش ماه یکبار مورد بازرسی قرار گیرد.
در سال 2006 پل به طور کامل بازدید شد. شرکت U.R.S طی قراردادی با اداره راه و ترابری مینستوتا یک تحلیل خستگی جامع برای پل انجام داد. در نتیجه این تحلیل ها پیشنهاد شد صفحات فولادی بر روی 52 قطعه از حساس ترین و بحرانی ترین اعضای خرپایی اضافه شود و جزئیات جوش این اعضا به صورت چشمی به دقت بازرسی و نواقص موجود برطرف گردد. در نتیجه این بازرسی ها ترک های خستگی زیادی در ناحیه دهانه های ورودی و خروجی و همچنین ترک ها و نواقص سازه ای متعددی در دیگر قسمت ها مشاهده گردید. از جمله ضعف های سازه ای مشاهده شده می توان به نواقص اجرای جوش قطعات سازه ای و کاهش سطح مقطع اعضای خرپایی داخلی بر اثر خوردگی اشاره نمود.
بر اساس اظهارات وزیر راه و ترابری ایالات متحده پل I-35W در سیستم بازرسی یکپارچگی سازه ای 50 امتیاز کسب نمود که حداکثر امتیاز این سیستم بازرسی 120 می باشد. امتیاز 50 مبین آن است که سازه پل فرسوده بوده و نیاز به بهسازی داشته است اما بروز حادثه ای با این ابعاد پیش بینی نمی شد. گزارش بازرسی ترک های بحرانی که توسط تیمی از بازرسان فنی اداره راه و ترابری مینستوتا ارائه شده است مشکلات خاصی را که سبب کسب امتیاز پایین پل I-35W شد، تشریح می نماید. امتیاز پایین را می توان به خوردگی اعضا در ناحیه ای که لایه رنگ پل کیفیت خود را از دست داده است، نواقص جوشکاری اعضای فولادی خرپایی و تیرهای کف، عدم حرکت تکیه گاه ها مطابق طراحی های اولیه و نیاز به ترمیم ترک های ناشی از خستگی در تیرهای خرپایی جانبی و دهانه های ورودی نسبت داد.
به دنبال این حادثه فاجعه بار مقامات قوانین مربوط به ایمنی سازه ها را مورد بررسی مجدد قرار می دهند تا در صورت نیاز قوانین سخت گیرانه تری اعمال گردد.

5- بازرسی عمومی پل ها در ایالات متحده
در ایالات متحده مجموعاٌ تعداد000 600 پل ثبت شده وجود دارد. براساس استاندارد ملی بازدید پل ها در امریکا (NBIS)، که در اوایل دهه 70 به اجرا گذارده شده است، پل هایی با طول بیش از 6 متر که در جاده های عمومی کشور قرار دارند باید هر دو سال یکبار مورد بازدید قرار گیرند. ایمنی سازه ها با انجام بازرسی ها و رتبه بندی اعضایی همچون عرشه، رو سازه و زیر سازه تأمین می گردد. این در حالیست که اگر پل در شرایط بسیار خوبی باشد، بازرسی ها هر 4 سال یکبار انجام می پذیرد. تقریباً 83% از پلهای امریکا هر دو سال یکبار، 12% یکبار در سال و 5% هر 4 سال یکبار بازرسی می گردند. پس از فروریزش پل I-35W از آنجا که علت حادثه به طور قطع مشخص نمی باشد، ادارات راه و ترابری کلیه ایالت های امریکا موظف به بازدید فوری پل هایی با سیستم سازه ای مشابه پل I-35W شدند.
پس از انجام بازدیدهای فنی کارایی سازه ای و یا نواقص سازه ای پل ها مشخص می گردد. وجود ناکارایی سازه ای بدین معناست که برخی از المانهای پل نیاز به کنترل منظم و یا تعمیر دارند. ناکارایی سازه ای به معنی ناایمن بودن و یا احتمال ریزش کلی پل نمی باشد بلکه لزوم پایش سازه پل، انجام بازدیدهای منظم و بهسازی پل را بیان می نماید . اکثر پل های دارای نواقص سازه ای در جریان بهسازی و اجرای تعمیرات باز می مانند و ترافیک بر روی آنها در جریان است. در صورتی که بازرسان شرایط سازه ای پل را ناایمن تشخیص دهند ساعات عبور خودروها از روی پل را محدود می کنند و یا پل را به کل می بندند.
بر اساس آخرین گزارش اداره را ه و ترابری ایالت Minnesota طی سالهای 2004-2006 بطور متوسط سالانه 2300000 دلار صرف بازرسی پلهای این ایالت شده است. این در حالیست که با شرایط امروز احداث تنها یک پل با ابعاد پل I-35W بطور تقریبی 20000000 میلیون دلار هزینه در بر خواهد داشت. به دنبال بروز این حادثه نگرانی ها در مورد ایمنی سازه پل ها افزایش یافته است. آمارهای منتشره از سوی انجمن مهندسان عمران امریکا حاکی از آن است که تعمیر تمامی پل هایی که دارای نقص سازه ای هستند بیش از 188 میلیارد دلار هزینه خواهد داشت (4/9 میلیارد دلار در سال به مدت 20 سال). حدود 3/8 میلیارد دلار از این مبلغ جهت رفع نواقص سازه ای ناش از خوردگی اجزای بتنی و فولادی صرف می شود. این ارقام بیانگر این واقعیت است که با تخصیص منابع مالی مناسب که در مقایسه با هزینه احداث پلها ناجیز می نماید می توان در ارتباط با وضعیت سازه ای و ایمنی پلها اطلاعات ارزشمندی حاصل و با اولویت بندی پروژه ها تدابیر لازم را جهت ترمیم، بهسازی و مقاوم سازی آنها اتخاذ کرد .
6- درسهایی برای بهسـازی و مقـاوم سـازی پلهـای ایـران
بر اساس تجربیات موجود در پل I-35W به عنوان شاخصی از پل های بزرگراهی آمریکا که افزون بر 80% آنها هر دو سال حداقل 1 بار مورد بازرسی قرار می گیرند باید به نحوی جدی نسبت به رخداد حوادث مشابه در پل های کشور حساس بود. برابر آخرین آمار منتشر شده وزارت راه و ترابری ایران تعداد پل های سراسر کشور بالغ بر 300 هزار دهانه به طول هزار و پانصد کیلومتر است. شواهد موجود به خوبی بیانگر این ادعاست که بازرسی های منظم پل های شهری، بزرگراهی، راه آهن و راه های اصلی به جز در موارد خاصی که شواهد بارزی از خوردگی یا علایم تخریب دیگر مشاهده شده است، انجام نمی پذیرد. با این وجود حتی نشریه 367 (شناسنامه فنی پل ها) در سال 1386 به صورت رسمی از طرف معاونت برنامه ریزی و نظارت راهبردی ریاست جمهوری منتشر شده است نیز تا زمان نگارش این مقاله در میان دستگاه های بهره بردار و کارفرمایی تنها توسط معاونت فنی و عمران شهرداری تهران لازم الاجرا شده است. این در حالیست که اطلاعات فنی هر پل مطابق این نشریه در مرحله طراحی تنها در حد شناسایی پل می باشد و در صورت تکمیل دفترچه در سنوات بعدی به عنوان بازرسی فنی سازه و اجزای غیر سازه ای، همچنان بند های الزام آوری جهت زمان بندی برای بازدیدهای دوره ای و استراتژی مشهود سیستم مدیریت پل وجود ندارد.
در تصویر شماره 2 تقسیم بندی استان های کشور براساس تعداد پل های استاندارد مشاهده می شود که نتیجه آمار معاونت آموزش، تحقیقات و فن آوری وزارت راه می باشد. در این بین با انتخاب 3 پل کلاک، آلی در و ریچکان از دو استان تهران و سیستان و بلوچستان با حداکثر و حداقل تراکم پل های استاندارد شاخص های بازرسی و تعمیر پل های ایران بررسی می گردد.
پل کلاک با سطح زیر بنای بالغ بر 7200 مترمربع و طول کلی 697 متر یکی از مهم ترین تقاطع های غیر همسطح بزرگراهی کشور بر روی شاهراه تهران- کرج می باشد. بزرگ ترین عامل تخریب این پل خوردگی بتن و فولاد توسط یون کلراید تحت اثر سیستم ضعیف جمع آوری و انتقال آب های سطحی بوده است.
پل های ریچکان و آلی در بر روی محور خاش- ایرانشهر نیز به ترتیب دارای طول70 متر و 150 متر می باشند. این پل ها در سالهای 1353 تا 1355 ساخته شده اند و ضعف اجرایی و آبشستگی پایه ها مهم ترین دلایل خرابی این پل ها بوده اند.
2- تقسیم بندی استان های کشور بر اساس تعداد پل های استاندارد شده
در جدول شماره 1 برخی شاخصه های خرابی و هزینه تعمیر پل ها به صورت کلی و برحسب متر طول ارائه شده است. در حقیقت هر یک از این پل ها در صورتی که طی دوره ها منظمی بازدید و به صورت متوالی مورد بازسازی های جزئی قرار می گرفتند این حجم از هزینه ها را برای نگهداری و تعمیر در بر نمی داشتند.
نکته قابل تامل در مورد این پل ها این است که در هر سه پل، کارفرما خواستار بازسازی پل تا حد پیش از بهره برداری(مطابق مشخصات زمان تحویل پل) بوده است و عملاً هیچ یک از این پل ها جهت زمین لرزه محتمل مقاوم سازی نشده اند. انتخاب این هدف بهسازی به منظور عدم بکارگیری روش محاسبه حق الزحمه مطالعات مقاوم سازی لرزه ای پل های موجود کاملاً موثر بوده است.
این جدول همچنین حاوی هزینه تقریبی ساخت مجدد این پل ها با سیستم و مشخصات مشابه است که نشان می دهد هزینه تعمیر چنین پل هایی که مسئولین را نسبت به ادامه بهره برداری نگران ساخته است بالغ بر 12 تا 19 درصد از هزینه ساخت پل های جدید است و به عبارتی آستانه تحریک بهره برداران پل های شهری و برون شهری نسبت به خرابی پل ها را بیان می­ کند.

جدول1- مقایسه هزینه تعمیر و نوسازی پل های کلاک، آلی در و ریچکان


12%
نام پل
طول کلی
(m)
سیستم
سازه ای
خرابی های عمده
هزینه کلی بهسازی (میلیون ریال)
هزینه بهسازی
به ازای مترطول
(میلیون ریال)
هزینه ساخت پل برابر فهرست بهاء 1386
درصد هزینه تعمیر به هزینه نوسازی
کلاک آزاد راه تهران-کرج
697
مرکب تیر پیش ساخته بتنی و شاهتیر فولادی
خوردگی در تیرهای فولادی و خوردگی شدید در تیرهای بتنی و سرستون ها
11877
17
72000
5/16%
ریچکان مسیر اصلی خاش- ایرانشهر
70
خرپای فولادی و دال بتنی
آبشستگی پایه ها و خوردگی شاهتیرها ضعف سرستون
1890
0/27
10080
8/18%
آلی در
مسیر اصلی خاش- ایرانشهر
150
خرپای فولادی و دال بتنی
ناپایداری کوله ها، خوردگی و اعوجاج شاهتیرها و ضعف سرستون
2592
3/17
21600

7- نتیجه گیری:
· بر اساس رخداد فروریزش پل I-35W در سال 2007 که چندین مرحله مورد بازرسی های فنی کلی قرار گرفته بود لزوم بکارگیری سیستم جامع مدیریت پل به اثبات می رسد که شامل راهبرد الزام آور نگهداری نیز باشد.
· انتخاب راهبرد های پیگیرانه نگهداری و بهسازی پل ها با توجه به اهمیت شریان حیاتی مربوط به پل نسبت به هر روش مقابله با بحران ارجحیت دارد و در این زمینه بکارگیری سناریو های what-if توصیه می شود.
· با توجه به انتشار نشریه 367(شناسنامه فنی پل ها) انتشار بخشنامه مکملی که شامل راهبرد های جامع نگهداری و سیستم مدیریت پل باشد الزامی بنظر می رسد.
· درک لزوم بهسازی لرزه ای پل ها همزمان با ترمیم دیگر خرابی های موجود پل در میان کارفرمایان و بهره برداران از اهمیت ویژه ای برخوردار است چرا که بنابر رویکرد موجود به جهت کاهش هزینه های مطالعاتی
· بنابر مطالعات و پروژه های اجرایی شاهد در این مقاله، به ازای بازرسی، نگهداری و ترمیم 300هزار دهانه پل موجود در کشور به طول 1500 کیلومتر که از زمان ساخت بیش از 50 درصد آن ها افزون بر 25 سال می گذرد به منابع مالی برابر هجده هزار میلیارد ریال ظرف مدت 25 سال نیاز خواهیم داشت و به عبارتی بنابر این تخمین مقدماتی دستگاه های بهره بردار باید سالانه 720 میلیارد ریال صرف بازرسی و انجام راهبردهای پیشگیرانه نگهداری پل نمایند.


* نويسنده: رضا مهدوی *
__________________










کاربر زیر بخاطر پست مفید از Alireza_Mahan23 سپاسگزاری کرده اند :

  #32  
قدیمی 04/02/2010
آواتار Alireza_Mahan23
Alireza_Mahan23 Alireza_Mahan23 آفلاین است
معاون کل تالار

مدال افتخار پادشاه ایرانی مدیر نمونه ماه مدیر نمونه ماه 

 

نام: عليرضا
جنسيت: مرد
شغل: مهندس عمران
محل سکونت: ایران-مشهد
مدرک تحصيلی: کارشناسی ارشد
پست: 19,266
سپاس: 6,580
از این کاربر 13,537 بار در 7,962 پست سپاسگزاری شده
اعتراض ها: 4
به این کاربر 8 بار در 8 پست اعتراض شده
چوب: 7,359,241
ارسال پیغام Yahoo به Alireza_Mahan23
مقاله کامل در مورد ساختار كار پلها:

این مقاله به بحث و بررسی پیرامون انواع پل ها و ساختارشان پرداخته است. شما در این مقاله با انواع پل های تیری، پل های قوسی، پلهای زیرقوسی و پل های معلق آشنا خواهید شد. به علاوه این كه نیروهایی را كه بر پلها تاثیر می گذارند را خواهید شناخت.
این مقاله با زبانی ساده و قابل فهم به بررسی پلها می پردازد. امید است مورد رضایت شما قرار گیرد. بدون شك تا به حال پلی را دیده اید و یا به احتمال زیاد از روی یكی از آنها عبور كرده اید. حتی اگر شما تخته یا كنده درخت را برای جلوگیری از خیس شدن خود بر روی آب قرار دهید در واقع شما یك پل ساخته اید. حقیقتاً پل ها در همه جا وجود دارند و در واقع یك بخش طبیعی و بدیهی از زندگی روزمره ی ما را تشكیل می دهند. یك پل مسیری را بر روی مانع ایجاد می كند كه این موانع می تواند رودخانه، دره، جاده، خطوط راه آهن و ... باشد.در این مقاله ما سه نوع اصلی از پل ها را مورد مطالعه و بررسی قرار خواهیم داد كه شما می توانید بفهمید كه هركدام چگونه كار می كنند. نوع پل بكار رفته در یك مكان به نوع مانع موجود در آنجا بستگی دارد. معیار اصلی در تعیین نوع پل وسعت و گستردگی آن مانع می باشد. چه مسافتی میان طرفین مانع وجود دارد؟ این مسئله، فاكتور اصلی در تعیین نوع پلی است كه قرار است در آن محل احداث شود. با سپری شدن زمان و مطالعه ای مقاله علت آن را متوجه خواهید شد.
*** سه نوع اصلی از پلها موجودند: پل تیری پل قوسی پل معلق
تفاوت عمده ی این سه پل در فاصله دهانه ی پل است. دهانه، فاصله ای است بین پایه های ابتدایی و انتهایی پل، اعم از اینكه آن ستون، دیوارهای دره یا پل باشد. طول پل تیری مدرن امروزه از 200 پا (60متر) تجاوز نمی كند. در حالی كه یك پل قوسی مدرن به 800 تا 1000 پا (240 تا 300 متر) همو می رسد. پل معلق نیز تا 7000 پا طول دارد.چه عاملی سبب می شود كه یك پل قوسی بتواند درازای بیشتری نسبت به پل تیری داشته باشد؟ و یا یك معلق بتواند تقریباً تا 7 برابر طول پل قوسی را داشته باشد. جواب این سوال زمانی بدست می آید كه بدانیم چگونه انواع پلها از دو نیروی مهم فشاری و كششی تاثیر می پذیرند.
نیروی فشاری : نیرویی است كه موجب فشرده شدن و یا كوتاه شدن چیزی كه بر روی آن عمل می كند می شود.
نیروی كششی : نیرویی است كه سبب افزایش طول و گسترش چیزی كه بر روی آن عمل می كند، می گردد.
در این زمینه می توان از فنر به عنوان یك مثال ساده نام برد. زمانی كه آن را روی زمین فشار می دهیم و یا دو انتهای آن را به هم نزدیك می كنیم، در واقع ما آن را را متراكم می سازیم. این نیروی تراكم یا فشاری موجب كوتاه شدن طول فنر می شود. و نیز اگر دو سر فنر را از یكدیگر دور سازیم، نیروی كششی در فنر ایجادشده، طول فنر را افزایش می دهد. نیروی فشاری و كششی در همه پل ها وجود دارند و وظیفه طراح پل این است كه اجازه ندهد این نیروها موجب خمش و یا گسیختگی گردد. خمش زمانی اتفاق می افتد كه نیروی فشاری بر توانایی شئ در مقابله با فشردگی غلبه كند. بهترین روش در موقع رویارویی با این نیروها خنثی سازی، پخش و یا انتقال آنهاست. پخش كردن نیرو یعنی گسترش دادن نیرو به منطقه وسیع تری است چنانكه هیچ تك نقطه مجبور به متحمل شدن بخش عمده ی نیروی متمركز نباشد. انتقال نیرو به معنی حركت نیرو از یك منطقه غیر مستحكم به منطقه مستحكم است، ناحیه ای كه برای مقابله با نیرو طراحی شده و منظور گردیده است. یك پل قوسی مثال خوبی برای پراكندگی است حال آنكه پل معلق نمونه ای بارز از انتقال نیروست.
پلهای تیری : یك پل تیری، اساساً یك سازه افقی مستحكم است كه بر روی دو پایه نصب شده است و این پایه ها، هر یك در انتهای طرفین پل قرار دارند. وزن پل و هرگونه وزن اضافی دیگر كه بر روی پل اعمال می شود، مستقیماً توسط پایه ها تحمل می شوند.
فشار : نیروی فشاری خود را در بالای عرشه پل یا جاده نمایان می سازد. این نیرو موجب می شود كه بخش بالایی عرشه كوتاه- تر گردد.
كشش : برآیند نیرو فشاری در بخش بالایی عرشه به ایجاد نیروی كششی در بخش پایینی عرشه پل منجر می شود. این كشش موجب افزایش طول در بخش پایینی پل می شود.
پراكندگی : بسیاری از پلهای تیری كه شما می توانید آنها را در بزرگراهها بیابید، برای تحمل بار از تیرهای بتونی یا فولادی بهره می گیرند. اندازه تیر و بویژه ارتفاع تیر بر حسب مسافتی كه تیر دارد محاسبه می شود.با افزایش ارتفاع تیر، به مقدار مصالح بیشتری برای پراكنده كردن كشش مورد نیاز است. طراحان پل برای ایجاد تیر های بلند از شبكه های فلزی یا خرپا بهره می گیرند. این خرپا به تیر استحكام داده و توانایی آن را در پخش كردن نیروی فشاری یا كششی افزایش می دهد. زمانی كه تیر شروع به متراكم شدن می كند، این نیرو در میان خرپا پخش می شود. به غیر از خلاقیت موجود در خرپا، پل تیری در میزان طول خود محدود است. با افزایش طول آناندازه خرپا نیز می بایست افزایش یابد تا زمانی كه خرپا به نقطه می رسد كه دیگر نمی تواند وزن خود را تحمل كند.
انواع پل های تیری : پل های تیری به سبك های بسیار زیادی ساخته می شود. نوع طراحی، مكان و چگونگی ساخت یك خرپا، تعیین كننده نوع یك خرپاست. در بدو انقلاب صنعتی، احداث پلهای تیری در ایالات متحده با سرعت توسعه یافت. طراحان با طرحهای نوین و سازه های مختلف و متعدد این حرفه را رونق بخشیدند. پل های چوبی جای خود را به پلهای فلزی یا نیمه فلزی دادند. این نمونه های متنوع از خرپا ها گامهای موثری را در جهت پیشرفت در این زمینه برداشت. یكی از ابتدایی ترین و مشهور ترین آنها خرپای «هاو» بود كه در سال 1884 توسط «ویلیام هاو» طراحی و ابداع شد. شهرت ابداع جدید وی در طرح خرپایش نبود، چرا كه مشابه طرح king post بود. چگونگی استفاده از تیرهای آهنی عمودی با مجموعه ای از تیر های چوبی مورب طرح او بود كه مورد توجه قرار گرفت. بسیاری از پلهای تیری امروزه هنوز از طرح هاو در خرپایشان استفاده می كنند.
مقاومت خرپا : یك تیر به تنهایی هرگونه فشردگی یا كشش را در بر خواهد گرفت. بیشترین فشردگی در بالاترین نقطه تیر و بیشترین كشش در در پایین ترین نقطه تیر است. در وسط تیر فشردگی و كشش كمتری وجود دارد.اگر تیر طوری طراحی شود كه بیشترین مقدار مصالح در بالا و پایین تیر و در وسط تیر مصالح كمتری مصرف شود، بهتر خواهد توانست نیروهای كششی یا فشاری را تحمل كند. ( در توضیح می توانیم بگوییم كه تیر های I شكل مستحكم تر از تیر های مستطیلی ساده است).مركز تیر از عضو های مورب خرپا تشكیل شده طوری كه بالا و پایین خرپا نشان دهنده بالا و پایین تیر است. با نگرش به خرپا به این شیوه ما قادریم ببینیم كه بالا و پایین تیر مصالح بیشتری نسبت به مركز آن مصرف می كند(به این دلیل كه مقوای چین دار خیلی مستحكم است).در اضافه به مطالب فوق در مورد تاثیرات خرپا، علت دیگری نیز وجود دارد دالّ براینكه چرا خرپا مستحكم تر از تیر است: یك خرپ توانایی پخش كردن نیرو را دارد. خرپا طوری طراحی شده است كه به دلیل داشتن تعداد زیادی از مثلث ها _كه به طور معمول در آن مورد استفاده قرار می گیرد_ هم می تواند یك سازه بسیار مستحكم ایجاد كند و هم كار انتقال نیرو را از یك نقطه به منطقه وسیعی انجام دهد.
پل قوسی : یك پل قوسی سازه ای است به شكل نیم دایره كه در هر طرف آن نیم پایه (پایه های جناحی) قرار دارد. طراحی قوس طوری است كه به طور طبیعی وزن عرشه پل را به نیم پایه ها منتقل و منعطف می كند.
فشار : پلهای قوسی همواره تحت فشار قرار گرفته اند. نیروی فشاری همواره در امتداد قوس و به سمت نیم پایه ها وارد می شود.
كشش : كشش در یك قوس ناچیز و قابل اغماض است. خاصیت طبیعی خمیدگی قوس و توانایی ان در پخش نیرو به بیرون، به طور قابل ملاحظه ای تاثیرات كشش را در قسمت زیرین قمس كاهش می دهد. هرچند با زیاد شدن زاویه ی خمیدگی ( بزرگتر شدن نیمدایره قوس) تاثیرات نیروی كششی نیز در آن افزایش می یابد.همانطور كه اشاره شد، شكل قوس به تنهایی موجب می شود كه وزن مركز عرشه پل به پایه های جناحی منتقل شود. مشابه پلهای تیری محدوده ی اندازه پل در مقاومت پل تاثیر گذاشته و در نهایت بر ان چیره خواهد گشت.

انواع پلهای قوسی
پراكندگی : انواع قوس ها محدود هستند. امروزه قوس هایی مانند «رمان» ، «باروك» و «رنسانس» وجود دارند كه همه آنها از نظر معماری و ظاهری متمایز هستند ولی از نظر ساختار یكسانند. میزان مقاومت این پلها به شكل هندسی آنه بستگی دارد. یك پل قوسی احتیاج به هیچگونه تكیه گاه یا كابل ندارد. و قوسهایی كه از سنگ ساخته شده است حتی نیازی به ساروج یا ملات نیز ندارد. در گذشته نیز رومیان باستان پلهای قوسی (پل آب بر) ساخته اند كه هنوز هم پابرجا هستند و سازه های آنه امروزه نیز با اهمیت به شمار می آید.
پل معلق : پل معلق پلی است كه توسط كابل ها (یا ریسمانها یا زنجیرها) در عرض رودخانه (یا در هر جایی كه مانع وجود داشته باشد) كشیده شده اند و عرشه توسط این كابل ها معلق مانده است. پل های معلق مدرن دو برج در میان پل دارند كه كابل ها آن را می كشند. بنابراین برج ها بیشترین وزن جاده را تحمل می كنند.
نیروی فشاری : نیروی فشاری عرشه پل معلق را به سمت پایین متراكم می سازد در نتیجه این نیروی فشاری به برجها وارد می آیند. اما از آنجا كه این یك پل معلق است، كابلها این نیروی فشاری را از برجها گرفته و آن را در بین خود پراكنده می كنند. و آن را به زمین منتقل می كنند، جایی كه آنها محكم بسته شدند.
كشش : كابلهایی كه میان دو لنگرگاه خود یعنی تكیه گاهها قرار گرفته اند، دریافت كننده نیروی كششی هستند. وزن پل و حمل و نقل روی آن سبب می شود كه این كابل ها به شدت كشیده شوند. تكیه گاهها نیز تحت كشش هستند ولی از آنجا كه همانند برجها، محكم به زمین بسته شده اند، كشش موجود در آنها پراكنده می شود. تقریباً همه پلهای معلق به غیر از كابل ها از یك سامانه خرپا نیز بر خوردارند كه در زیر عرشه پل قرار گرفته است (Deck truss). این سامانه موجب استحكام بیشتر عرشه و كاهش تمایل سطح جاده به نوسان و مواج شدن می شود.
انواع پلهای معلق : پلهای معلق به دو شكل طراحی می شوند: پل معلقی كه به شكل M است و نوع كم كاربردتری كه به صورت «كابل ایستاده» طراحی شده كه بیشتر شبیه A است. پلهای كابل ایستاده دیگر مانند پلهای معلق معمولی نیازی به دو برج و چهار تكیه گاه ندارند. در عوض كابلها از سمت جاده به بالای برج محكم بسته شده اند. در هر دو نوع پل، كابلها تحت كشش هستند.
نیروهای دیگر در پل : ما در مورد دو نیروی بزرگ و مهم فشاری و كششی در طراحی پل بسیار صحبت كردیم. تعداد بسیار زیاد دیگری از نیروها در پل وجود دارند كه در طراحی پل باید مد نظر قرار گرفته شوند. این نیرها معمولاً به محل مشخصی بستگی داشته و یا به نوع پل مرتبط است.
نیروی گشتاوری : نیروی گشتاوری نیروی چرخشی یا پیچشی و یكی از نیروهایی است كه به طور موثر در پلهای قوسی و تیری وجود ندارد ولی به میزان قابل ملاحظه ای در پلهای معلق وجود دارد. شكل طبیعی قوس و خرپاهای موجود در پلهای تیری اثرات مخرب این نیرو را از بین می برد. پلهای معلق به دلیل معلق بودن همواره (توسط كابلها) در برابر این نیروی گشتاوری بخصوص در هنگام وزش بادهای تند بسیار اسیب پذیر است. همه ی پلهای معلق در عرشه ی خود از خرپا ها بهره می برند كه همانند پلهای تیری تاثیرات نیروی گشتاوری را كاهش می دهد ولی در پلهایی با طول زیاد، خرپای موجود در عرشه به تنهایی كافی نیست. آزمون « تونل باد» برای سنجش میزان مقاومت پل در برابر جنبش های چرخشی بر روی مدل آزمایش می شود. ایجاد خرپاهای آیرودینامیك در سازه هاو كابلهای آویزان مورب از روش هایی هستند كه برای تقلیل تاثیرات نیروهای گشتاوری به خدمت گرفته می شود.
تشدید : تشدید ( ارتعاش در چیزی كه توسط نیروی خارجی به وجود آمده و با ارتعاش طبیعی اصل آن چیز، هماهنگ و هم موج است) نوعی نیرویی است، افسار گسیخته كه می تواند بر روی پل اثرات مخربی بگذارد. امواج تشدید كننده از میان پل به صورت امواج عبور خواهد كرد. یك نمونه مشهور از قدرت تخریب این امواج مرتعش پل «تاكوما ناروز»8 است كه در سال 1940 توسط بادی با سرعت 40 مایل در ساعت (64 كیلومتر در ساعت) تخریب شد. بررسی های دقیق از محل نشان می دهد كه خرپای عرشه ناكارآمد بوده ولی با این حال عامل اصلی فرو ریزی پل نبوده. در آن روز باد با سرعت به پل ضربه زده و با برخورد قائم به پل باعث ایجاد ارتعاش شده است. این باد های متوالی لرزش و ارتعاش را افزایش داده تا آنجا كه این امواج توانستند پل را فرو ریزند. زمانی كه یك ارتش بر روی پل رژه می رود، اغلب به سربازان گفته می شود " قدمرو" . با این كار، ریتم رژه ی آنها سبب ایجاد تشدید در پل می شود. اگر ارتش به اندازه كافی بزرگ باشد و آهنگ ارتعاشی لازم را داشته باشد در نهایت می تواند پل را فرو پاشد.به منظور مقابله با تاثیرات تشدید در یك پل، خیلی مهم است كه در پل كاهندهای امواجی طراحی شود تا در این امواج تداخل ایجاد كرده و از شدت آن بكاهد. ایجاد تداخل یك روش موثر در برابر امواج مخرب می باشد. تكنیك های كاهش امواج معمولاً شامل اینرسی نیز هستند. اگر پلی، به عنوان مثال یك جاده با سطح پیوسته و یك تكه داشته باشد، یك موج قوی می تواند در امتداد پل حركت كرده و منتقل شود. اگر جاده از تكه های مختلفی تشكیل شده باشد و صفحات آن همدیگر را همپوشانی كرده باشند آنگاه جنبش از یك بخش توسط صفحات به بخش دیگر منتقل می شود. از آنجا كه آن صفحات بر روی یكدیگر قرار گرفته اند، اصطكاك نیز ایجاد می شود. این ترفند، اصطكاك كافی را برای تغییر فركانس امواج مرتعش را تولید می كند. با تغییر فركانس می توانیم از ورود امواج مخرب به سازه جلوگیری كنیم. تغییر بسامد به طرزی موثر دو نوع مختلف از موج را به وجود می آورد كه موجب خنثی شدن یكدیگر می شوند.
آب و هوا : نیروی طبیعت به ویژه آب و هوا به گونه ایست كه مبارزه با آن مشكل و حتی در برخی موارد امكان پذیر نیست. باران، یخبندان، طوفان و نمك هر كدام به تنهایی می توانند در فرو پاشی پل نقش بسزایی داشته و تحت یك مجموعه به احتمال بسیار قوی خواهند توانست پل را تخریب كنند. طراحان پل با مطالعه و بررسی شكست های گذشته حرفه ی خود را بدرستی آموخته اند. آنان آهن را به چوب عوض كردند و سپس فولاد را جایگزین آهن كردند. بعد ها از بتون بطور گسترده در پلها بهره گرفتند. هر كدام از مواد و مصالح جدید و یا تكنیك های طراحی، ثمره درسهایی است كه در گذشته آموخته اند. با دانستن نیروی گشتاوری، تشدید و آیرودینامیك ( بعد از چند شكست بزرگ ) طراحی های بهتر نیز شكل گرفت.تا آنجاكه توانستند بر مسئله آب و هوا غلبه كنند. تعداد شكست های مرتبط با آب و هوا و شرایط جوی بسیار فراتر از تعداد شكست ها در زمینه طراحی بوده است. این شكست ها به ما آموخته است كه همواره به دنبال راه حل بهتری باشیم.


* نويسنده: رضا مهدوی *
__________________











  #33  
قدیمی 04/02/2010
آواتار Alireza_Mahan23
Alireza_Mahan23 Alireza_Mahan23 آفلاین است
معاون کل تالار

مدال افتخار پادشاه ایرانی مدیر نمونه ماه مدیر نمونه ماه 

 

نام: عليرضا
جنسيت: مرد
شغل: مهندس عمران
محل سکونت: ایران-مشهد
مدرک تحصيلی: کارشناسی ارشد
پست: 19,266
سپاس: 6,580
از این کاربر 13,537 بار در 7,962 پست سپاسگزاری شده
اعتراض ها: 4
به این کاربر 8 بار در 8 پست اعتراض شده
چوب: 7,359,241
ارسال پیغام Yahoo به Alireza_Mahan23
نكاتي چند در اجراي پل‌هاي بتن مسلح‌:

اشتباهاتي در اجراي پل هاي بتن مسلح و بررسي آن ها :
قطع پيوستگي آرماتور دورپيچ در ناحيه تشكيل مفصل خميري در پاي ستون‌هاي پل‌
وصله آرماتور طولي در ناحيه تشكيل مفصل خميري در پاي ستون‌هاي پل‌
عدم تامين طول لازم براي نشيمن تيرهاي بتن مسلح پيش ساخته عرشه پل‌
جانمايي نادرست نئوپرن در زير تيرهاي پيش ساخته عرشه پل‌
عمل آوري نامناسب بتن عرشه و ايجاد ترك‌هاي انقباضي‌
اجراي نامناسب درزهاي انبساط‌
اجراي نامناسب نرده هاي پل‌

(فقط كاربران عضو مجاز به دیدن لینک ها هستند)
__________________











  #34  
قدیمی 04/02/2010
آواتار Alireza_Mahan23
Alireza_Mahan23 Alireza_Mahan23 آفلاین است
معاون کل تالار

مدال افتخار پادشاه ایرانی مدیر نمونه ماه مدیر نمونه ماه 

 

نام: عليرضا
جنسيت: مرد
شغل: مهندس عمران
محل سکونت: ایران-مشهد
مدرک تحصيلی: کارشناسی ارشد
پست: 19,266
سپاس: 6,580
از این کاربر 13,537 بار در 7,962 پست سپاسگزاری شده
اعتراض ها: 4
به این کاربر 8 بار در 8 پست اعتراض شده
چوب: 7,359,241
ارسال پیغام Yahoo به Alireza_Mahan23
آشنایی با انواع پلها و ساختار آنها
بدون شک تا به حال پلی را دیده اید و یا به احتمال زیاد از روی یکی از آنها عبور کرده اید. حتی اگر شما تخته یا کنده درخت را برای جلوگیری از خیس شدن خود بر روی آب قرار دهید در واقع شما یک پل ساخته اید. حقیقتاً پل ها در همه جا وجود دارند و در واقع یک بخش طبیعی و بدیهی از زندگی روزمره ی ما را تشکیل می دهند. یک پل مسیری را بر روی مانع ایجاد می کند که این موانع می تواند رودخانه, دره, جاده, خطوط راه آهن و ... باشد
در این مقاله ما سه نوع اصلی از پل ها را مورد مطالعه و بررسی قرار خواهیم داد که شما می توانید بفهمید که هرکدام چگونه کار می کنند. نوع پل بکار رفته در یک مکان به نوع مانع موجود در آنجا بستگی دارد. معیار اصلی در تعیین نوع پل وسعت و گستردگی آن مانع می باشد. چه مسافتی میان طرفین مانع وجود دارد؟ این مسئله, فاکتور اصلی در تعیین نوع پلی است که قرار است در آن محل احداث شود. با سپری شدن زمان و مطالعه ای مقاله علت آن را متوجه خواهید شد.
اصول
سه نوع اصلی از پلها موجودند:
· پل تیری
· پل قوسی
· پل معلق
تفاوت عمده ی این سه پل در فاصله دهانه ی پل است. دهانه, فاصله ای است بین پایه های ابتدایی و انتهایی پل, اعم از اینکه آن ستون, دیوارهای دره یا پل باشد. طول پل تیری مدرن امروزه از 200 پا (60متر) تجاوز نمی کند. در حالی که یک پل قوسی مدرن به 800 تا 1000 پا (240 تا 300 متر) هم می رسد. پل معلق نیز تا 7000 پا طول دارد
چه عاملی سبب می شود که یک پل قوسی بتواند درازای بیشتری نسبت به پل تیری داشته باشد؟ و یا یک معلق بتواند تقریباً تا 7 برابر طول پل قوسی را داشته باشد. جواب این سوال زمانی بدست می آید که بدانیم چگونه انواع پلها از دو نیروی مهم فشاری و کششی تاثیر می پذیرند
نیروی فشاری
نیرویی است که موجب فشرده شدن و یا کوتاه شدن چیزی که بر روی آن عمل می کند می شود
نیروی کششی
نیرویی است که سبب افزایش طول و گسترش چیزی که بر روی آن عمل می کند, می گردد
در این زمینه می توان از فنر به عنوان یک مثال ساده نام برد. زمانی که آن را روی زمین فشار می دهیم و یا دو انتهای آن را به هم نزدیک می کنیم, در واقع ما آن را را متراکم می سازیم. این نیروی تراکم یا فشاری موجب کوتاه شدن طول فنر می شود. و نیز اگر دو سر فنر را از یکدیگر دور سازیم, نیروی کششی در فنر ایجادشده, طولفنر را افزایش می دهد
نیروی فشاری و کششی در همه پل ها وجود دارند و وظیفه طراح پل این است که اجازه ندهد این نیروها موجب خمش و یا گسیختگی گردد. خمش زمانی اتفاق می افتد که نیروی فشاری بر توانایی شئ در مقابله با فشردگی غلبه کند. بهترین روش در موقع رویارویی با این نیروها خنثی سازی,پخش و یا انتقال آنهاست. پخش کردن نیرو یعنی گسترش دادن نیرو به منطقه وسیع تری است چنانکه هیچ تک نقطه مجبور به متحمل شدن بخش عمده ی نیروی متمرکز نباشد. انتقال نیرو به معنی حرکت نیرو از یک منطقه غیر مستحکم به منطقه مستحکم است, ناحیه ای که برای مقابله با نیرو طراحی شده و منظور گردیده است. یک پل قوسی مثال خوبی برای پراکندگی است حال آنکه پل معلق نمونه ای بارز از انتقال نیروست
پلهای تیری
یک پل تیری, اساساً یک سازه افقی مستحکم است که بر روی دو پایه نصب شده است و این پایه ها, هر یک در انتهای طرفین پل قرار دارند. وزن پل و هرگونه وزن اضافی دیگر که بر روی پل اعمال می شود, مستقیماً توسط پایه ها تحمل می شوند
فشار
نیروی فشاری خود را در بالای عرشه پل یا جاده نمایان می سازد. این نیرو موجب می شود که بخش بالایی عرشه کوتاه- تر گردد
کشش
برآیند نیرو فشاری در بخش بالایی عرشه به ایجاد نیروی کششی در بخش پایینی عرشه پل منجر می شود. این کشش موجب افزایش طول در بخش پایینی پل می شود
مثال:
یک تخته در ابعاد 2 در 4 پا را بر روی جعبه خالی مثلاً جعبه شیر قرار دهید. هم اکنون شما یک پل تیری ساده ساخته اید. حال یک وزنه ۵٠ پوندی را در وسط آن قرار دهید. توجه کنید که چگونه تخته خم می شود. وجه بالایی تحت فشار و وجه پایینی تحت کشش است. اگر شما این افزایش وزن را ادامه دهید, سرانجام تخته خواهد شکست. یعنی قسمت بالایی خم شده و بخش پایینی آن ترک خورده و می شکند

پراکندگی
بسیاری از پلهای تیری که شما می توانید آنها را در بزرگراهها بیابید, برای تحمل بار از تیرهای بتونی یا فولادی بهره می گیرند. اندازه تیر و بویژه ارتفاع تیر بر حسب مسافتی که تیر دارد محاسبه می شود.با افزایش ارتفاع تیر, به مقدار مصالح بیشتری برای پراکنده کردن کشش مورد نیاز است. طراحان پل برای ایجاد تیر های بلند از شبکه های فلزی یا خرپا بهره می گیرند. این خرپا به تیر استحکام داده و توانایی آن را در پخش کردن نیروی فشاری یا کششی افزایش می دهد. زمانی که تیر شروع به متراکم شدن می کند, این نیرو در میان خرپا پخش می شود. به غیر از خلاقیت موجود در خرپا, پل تیری در میزان طول خود محدود است. با افزایش طول آن اندازه خرپا نیز می بایست افزایش یابد تا زمانی که خرپا به نقطه می رسد که دیگر نمی تواند وزن خود را تحمل کند
انواع پل های تیری
پل های تیری به سبک های بسیار زیادی ساخته می شود. نوع طراحی, مکان و چگونگی ساخت یک خرپا, تعیین کننده نوع یک خرپاست. در بدو انقلاب صنعتی, احداث پلهای تیری در ایالات متحده با سرعت توسعه یافت. طراحان با طرحهای نوین و سازه های مختلف و متعدد این حرفه را رونق بخشیدند. پل های چوبی جای خود را به پلهای فلزی یا نیمه فلزی دادند. این نمونه های متنوع از خرپا ها گامهای موثری را در جهت پیشرفت در این زمینه برداشت. یکی از ابتدایی ترین و مشهور ترین آنها خرپای «هاو»1 بود که در سال ١٨۴٠ توسط «ویلیام هاو»2 طراحی و ابداع شد
شهرت ابداع جدید وی در طرح خرپایش نبود, چرا که مشابه طرح kingpost بود. چگونگی استفاده از تیرهای آهنی عمودی با مجموعه ای از تیر های چوبی مورب طرح او بود که مورد توجه قرار گرفت. بسیاری از پلهای تیری امروزه هنوز از طرح هاو در خرپایشان استفاده می کنند
مقاومت خرپا
یک تیر به تنهایی هرگونه فشردگی یا کشش را در بر خواهد گرفت. بیشترین فشردگی در بالاترین نقطه تیر و بیشترین کشش در در پایین ترین نقطه تیر است. در وسط تیر فشردگی و کشش کمتری وجود دارد
اگر تیر طوری طراحی شود که بیشترین مقدار مصالح در بالا و پایین تیر و در وسط تیر مصالح کمتری مصرف شود, بهتر خواهد توانست نیروهای کششی یا فشاری را تحمل کند. ( در توضیح می توانیم بگوییم که تیر های I شکل مستحکم تر از تیر های مستطیلی ساده است)مرکز تیر از عضو های مورب خرپا تشکیل شده طوری که بالا و پایین خرپا نشان دهنده بالا و پایین تیر است. با نگرش به خرپا به این شیوه ما قادریم ببینیم که بالا و پایین تیر مصالح بیشتری نسبت به مرکز آن مصرف می کند(به این دلیل که مقوای چین دار خیلی مستحکم است)
در اضافه به مطالب فوق در مورد تاثیرات خرپا, علت دیگری نیز وجود دارد دالّ بر اینکه چرا خرپا مستحکم تر از تیر است: یک خرپ توانایی پخش کردن نیرو را دارد. خرپا طوری طراحی شده است که به دلیل داشتن تعداد زیادی از مثلث ها _که به طور معمول در آن مورد استفاده قرار می گیرد_ هم می تواند یک سازه بسیار مستحکم ایجاد کند و هم کار انتقال نیرو را از یک نقطه به منطقه وسیعی انجام دهد
پل قوسی
یک پل قوسی سازه ای است به شکل نیم دایره که در هر طرف آن نیم پایه (پایه های جناحی) قرار دارد. طراحی قوس طوری است که به طور طبیعی وزن عرشه پل را به نیم پایه ها منتقل و منعطف می کند
فشار
پلهای قوسی همواره تحت فشار قرار گرفته اند. نیروی فشاری همواره در امتداد قوس و به سمت نیم پایه ها وارد می شود
کشش
کشش در یک قوس ناچیز و قابل اغماض است. خاصیت طبیعی خمیدگی قوس و توانایی ان در پخش نیرو به بیرون, به طور قابل ملاحظه ای تاثیرات کشش را در قسمت زیرین قمس کاهش می دهد. هرچند با زیاد شدن زاویه ی خمیدگی ( بزرگتر شدن نیمدایره قوس) تاثیرات نیروی کششی نیز در آن افزایش می یابد
همانطور که اشاره شد, شکل قوس به تنهایی موجب می شود که وزن مرکز عرشه پل به پایه های جناحی منتقل شود. مشابه پلهای تیری محدوده ی اندازه پل در مقاومت پل تاثیر گذاشته و در نهایت بر ان چیره خواهد گشت
انواع پلهای قوسی
پراکندگی
انواع قوس ها محدود هستند. امروزه قوس هایی مانند «رمان»3 , «باروک»۴ و «رنسانس»۵ وجود دارند که همه آنها از نظر معماری و ظاهری متمایز هستند ولی از نظر ساختار یکسانند. میزان مقاومت این پلها به شکل هندسی آنه بستگی دارد. یک پل قوسی احتیاج به هیچگونه تکیه گاه یا کابل ندارد. و قوسهایی که از سنگ ساخته شده است حتی نیازی به ساروج یا ملاط نیز ندارد. در گذشته نیز رومیان باستان پلهای قوسی (پل آب بر) ساخته اند که هنوز هم پابرجا هستند و سازه های آنه امروزه نیز با اهمیت به شمار می آید
پل معلق
پل معلق پلی است که توسط کابل ها (یا ریسمانها یا زنجیرها) در عرض رودخانه (یا در هر جایی که مانع وجود داشته باشد) کشیده شده اند و عرشه توسط این کابل ها معلق مانده است. پل های معلق مدرن دو برج در میان پل دارند که کابل ها آن را می کشند. بنابراین برج ها بیشترین وزن جاده را تحمل می کنند
نیروی فشاری
نیروی فشاری عرشه پل معلق را به سمت پایین متراکم می سازد در نتیجه این نیروی فشاری به برجها وارد می آیند. اما از آنجا که این یک پل معلق است, کابلها این نیروی فشاری را از برجها گرفته و آن را در بین خود پراکنده می کنند. و آن را به زمین منتقل می کنند, جایی که آنها محکم بسته شدند
کشش
کابلهایی که میان دو لنگرگاه خود یعنی تکیه گاهها قرار گرفته اند, دریافت کننده نیروی کششی هستند. وزن پل و حمل و نقل روی آن سبب می شود که این کابل ها به شدت کشیده شوند. تکیه گاهها نیز تحت کشش هستند ولی از آنجا که همانند برجها, محکم به زمین بسته شده اند, کشش موجود در آنها پراکنده می شود





تقریباً همه پلهای معلق به غیر از کابل ها از یک سامانه خرپا نیز بر خوردارند که در زیر عرشه پل قرار گرفته است (Deck truss). این سامانه موجب استحکام بیشتر عرشه و کاهش تمایل سطح جاده به نوسان و مواج شدن می شود
(یک پل معلق کلاسیک در شهر نیویورک)
انواع پلهای معلق
پلهای معلق به دو شکل طراحی می شوند: پل معلقی که به شکل M است و نوع کم کاربردتری که به صورت «کابل ایستاده»6 طراحی شده که بیشتر شبیه A است. پلهای کابل ایستاده دیگر مانند پلهای معلق معمولی نیازی به دو برج و چهار تکیه گاه ندارند. در عوض کابلها از سمت جاده به بالای برج محکم بسته شده اند. در هر دو نوع پل, کابلها تحت کشش هستند
پل کابل ایستاده در نزدیکی ساوانا
نیروهای دیگر در پل
ما در مورد دو نیروی بزرگ و مهم فشاری و کششی در طراحی پل بسیار صحبت کردیم. تعداد بسیار زیاد دیگری از نیروها در پل وجود دارند که در طراحی پل باید مد نظر قرار گرفته شوند. این نیرها معمولاً به محل مشخصی بستگی داشته و یا به نوع پل مرتبط است
نیروی گشتاوری
نیروی گشتاوری نیروی چرخشی یا پیچشی و یکی از نیروهایی است که به طور موثر در پلهای قوسی و تیری وجود ندارد ولی به میزان قابل ملاحظه ای در پلهای معلق وجود دارد. شکل طبیعی قوس و خرپاهای موجود در پلهای تیری اثرات مخرب این نیرو را از بین می برد. پلهای معلق به دلیل معلق بودن در هموا (توسط کابلها) در برابر این نیروی گشتاوری بخصوص در هنگام وزش بادهای تند بسیار اسیب پذیر است
همه ی پلهای معلق در عرشه ی خود از خرپا ها بهره می برند که همانند پلهای تیری تاثیرات نیروی گشتاوری را کاهش می دهد ولی در پلهایی با طول زیاد, خرپای موجود در عرشه به تنهایی کافی نیست. آزمون « تونل باد»7 برای سنجش میزان مقاومت پل در برابر جنبش های چرخشی بر روی مدل آزمایش می شود. ایجاد خرپاهای آیرودینامیک در سازه هاو کابلهای آویزان مورب از روش هایی هستند که برای تقلیل تاثیرات نیروهای گشتاوری به خدمت گرفته می شود
تشدید
تشدید ( ارتعاش در چیزی که توسط نیروی خارجی به وجود آمده و با ارتعاش طبیعی اصل آن چیز, هماهنگ و هم موج است) نوعی نیرویی است, افسار گسیخته که می تواند بر روی پل اثرات مخربی بگذارد. امواج تشدید کننده از میان پل به صورت امواج عبور خواهد کرد. یک نمونه مشهور از قدرت تخریب این امواج مرتعش پل «تاکوما ناروز»8 است که در سال 1940 توسط بادی با سرعت 40 مایل در ساعت (64 کیلومتر در ساعت) تخریب شد. بررسی های دقیق از محل نشان می دهد که خرپای عرشه ناکارآمد بوده ولی با این حال عامل اصلی فرو ریزی پل نبوده. در آن روز باد با سرعت به پل ضربه زده و با برخورد قائم به پل باعث ایجاد ارتعاش شده است. این باد های متوالی لرزش و ارتعاش را افزایش داده تا آنجا که این امواج توانستند پل را فرو ریزند
زمانی که یک ارتش بر روی پل رژه می رود, اغلب به سربازان گفته می شود " قدم رو" . با این کار, ریتم رژه ی آنها سبب ایجاد تشدید در پل می شود. اگر ارتش به اندازه کافی بزرگ باشد و آهنگ ارتعاشی لازم را داشته باشد در نهایت می تواند پل را فرو پاشد
به منظور مقابله با تاثیرات تشدید در یک پل, خیلی مهم است که در پل کاهندهای امواجی طراحی شود تا در این امواج تداخل ایجاد کرده و از شدت آن بکاهد. ایجاد تداخل یک روش موثر در برابر امواج مخرب می باشد. تکنیک های کاهش امواج معمولاً شامل اینرسی نیز هستند. اگر پلی, به عنوان مثال یک جاده با سطح پیوسته و یک تکه داشته باشد, یک موج قوی می تواند در امتداد پل حرکت کرده و منتقل شود. اگر جاده از تکه های مختلفی تشکیل شده باشد و صفحات آن همدیگر را همپوشانی کرده باشند آنگاه جنبش از یک بخش توسط صفحات به بخش دیگر منتقل می شود. از آنجا که آن صفحات بر روی یکدیگر قرار گرفته اند, اصطکاک نیز ایجاد می شود. این ترفند, اصطکاک کافی را برای تغییر فرکانس امواج مرتعش را تولید می کند. با تغییر فرکانس می توانیم از ورود امواج مخرب به سازه جلوگیری کنیم. تغییر بسامد به طرزی موثر دو نوع مختلف از موج را به وجود می آورد که موجب خنثی شدن یکدیگر می شوند
آب و هوا
نیروی طبیعت به ویژه آب و هوا به گونه ایست که مبارزه با آن مشکل و حتی در برخی موارد امکان پذیر نیست. باران, یخبندان, طوفان و نمک هر کدام به تنهایی می توانند در فرو پاشی پل نقش بسزایی داشته و تحت یک مجموعه به احتمال بسیار قوی خواهند توانست پل را تخریب کنند. طراحان پل با مطالعه و بررسی شکست های گذشته حرفه ی خود را بدرستی آموخته اند. آنان آهن را به چوب عوض کردند و سپس فولاد را جایگزین آهن کردند. بعد ها از بتون بطور گسترده در پلها بهره گرفتند. هر کدام از مواد و مصالح جدید و یا تکنیک های طراحی, ثمره درسهایی است که در گذشته آموخته اند. با دانستن نیروی گشتاوری, تشدید و آیرودینامیک ( بعد از چند شکست بزرگ ) طراحی های بهتر نیز شکل گرفت.تا آنجاکه توانستند بر مسئله آب و هوا غلبه کنند. تعداد شکست های مرتبط با آب و هوا و شرایط جوی بسیار فراتر از تعداد شکست ها در زمینه طراحی بوده است. این شکست ها به ما آموخته است که همواره به دنبال راه حل بهتری باشیم
__________________











  #35  
قدیمی 17/02/2010
آواتار Alireza_Mahan23
Alireza_Mahan23 Alireza_Mahan23 آفلاین است
معاون کل تالار

مدال افتخار پادشاه ایرانی مدیر نمونه ماه مدیر نمونه ماه 

 

نام: عليرضا
جنسيت: مرد
شغل: مهندس عمران
محل سکونت: ایران-مشهد
مدرک تحصيلی: کارشناسی ارشد
پست: 19,266
سپاس: 6,580
از این کاربر 13,537 بار در 7,962 پست سپاسگزاری شده
اعتراض ها: 4
به این کاربر 8 بار در 8 پست اعتراض شده
چوب: 7,359,241
ارسال پیغام Yahoo به Alireza_Mahan23
دراز ترین پل آبی جهان :






__________________











  #36  
قدیمی 22/02/2010
آواتار Alireza_Mahan23
Alireza_Mahan23 Alireza_Mahan23 آفلاین است
معاون کل تالار

مدال افتخار پادشاه ایرانی مدیر نمونه ماه مدیر نمونه ماه 

 

نام: عليرضا
جنسيت: مرد
شغل: مهندس عمران
محل سکونت: ایران-مشهد
مدرک تحصيلی: کارشناسی ارشد
پست: 19,266
سپاس: 6,580
از این کاربر 13,537 بار در 7,962 پست سپاسگزاری شده
اعتراض ها: 4
به این کاربر 8 بار در 8 پست اعتراض شده
چوب: 7,359,241
ارسال پیغام Yahoo به Alireza_Mahan23
آشنايی با مراحل طراحی و ساخت پل بصورت فایل پاورپوینت:

((powerpointدرباره اجرای یک پل، آشنايی با مراحل طراحی و ساخت پل می باشد مربوطه به اصول مهندسی پل می باشد. سومين پل Carquinez يکـی از جديدترين و مهـمترين بنـاهای خـليج « San Francisco » بـود , که طراحی و ساخت آن با کمترين جلب توجه برای عموم همراه بود .
در اين فایل دور نمايی از نحوه انتخـاب سـازه پل و ترکيـب ساختار اصـلی اين پل جـديد بيان می شود.
اين پل يکی از مهمترين دستاوردهای علم مهندسی و ساخت وساز اسـت و باعث ورود شـغل مهندسی پل و صنعت پل سازی برای اولين بار به منطقه شد .

(فقط كاربران عضو مجاز به دیدن لینک ها هستند)
__________________











  #37  
قدیمی 23/02/2010
آواتار Alireza_Mahan23
Alireza_Mahan23 Alireza_Mahan23 آفلاین است
معاون کل تالار

مدال افتخار پادشاه ایرانی مدیر نمونه ماه مدیر نمونه ماه 

 

نام: عليرضا
جنسيت: مرد
شغل: مهندس عمران
محل سکونت: ایران-مشهد
مدرک تحصيلی: کارشناسی ارشد
پست: 19,266
سپاس: 6,580
از این کاربر 13,537 بار در 7,962 پست سپاسگزاری شده
اعتراض ها: 4
به این کاربر 8 بار در 8 پست اعتراض شده
چوب: 7,359,241
ارسال پیغام Yahoo به Alireza_Mahan23
پل های معروف آمریکا :



(فقط كاربران عضو مجاز به دیدن لینک ها هستند) نیو ریور گرج



(فقط كاربران عضو مجاز به دیدن لینک ها هستند) نیو ریور گرج (بهانگلیسی: New River Gorge Bridge) یک پل در ویرجینیای باختر آمریکاست.

این پل با۹۲۴متر طول و ۲۶۷ متر ارتفاع از کف دره، دومین بلندترین پل جهان است










(فقط كاربران عضو مجاز به دیدن لینک ها هستند) نیو ریور گرج

(فقط كاربران عضو مجاز به دیدن لینک ها هستند) نیو ریور گرج (بهانگلیسی: New River Gorge Bridge) یک پل در ویرجینیای باختر آمریکاست.
این پل با۹۲۴متر طول و ۲۶۷ متر ارتفاع از کف دره، دومین بلندترین پل جهان است

پل بی بریج

پل بی بریج (به انگلیسی: San Francisco Bay Bridge) یک پل معلق در سانفرانسیسکوی آمریکاست که اوکلند و مرکز سانفرانسیسکو را به هم متصل می‌کند.
بی بریج در فاصله در سال ۱۹۳۶ گشایش یافت، و با طول ۱۴ کیلومتر از طولانی‌ترین پل های دنیا به حساب می‌آید .

پل بروکلین

پل بروکلین (به انگلیسی: Brooklyn (فقط كاربران عضو مجاز به دیدن لینک ها هستند) ) یک پل معلق در نیویورک آمریکاست که بروکلین و منهتن را به هم متصلمی‌کند.
بی بریج در سال ۱۸۷۰ ساخته گردید، و با طول ۱۸۲۵ متر از قدیمی‌ترین (فقط كاربران عضو مجاز به دیدن لینک ها هستند) دنیا به حساب می‌آید .
پل بی بریج

پل بی بریج (به انگلیسی: San Francisco Bay Bridge) یک (فقط كاربران عضو مجاز به دیدن لینک ها هستند) در سانفرانسیسکوی آمریکاست که اوکلند و مرکز سانفرانسیسکورا به هم متصل می‌کند.
بی بریج در فاصله در سال ۱۹۳۶ گشایش یافت، و با طول ۱۴کیلومتر از طولانی‌ترین پل های دنیا به حساب می‌آید .



پل گلدن گیت

پل گلدن گیت (به انگلیسی: Golden Gate (فقط كاربران عضو مجاز به دیدن لینک ها هستند) ) یک پل معلق در سانفرانسیسکوی آمریکاست که شمال و جنوب این شهر را به هممتصل می‌کند ،گلدن گیت در فاصله بین سال‌های ۱۹۳۷ (پل در ۲۷ مه ۱۹۳۷ گشایش یافت) تا۱۹۶۴با طول ۲٬۷۳۷ متر طولانی‌ترین پل معلق دنیا به حساب می‌آمد .



پل فرد هارتمن

پل فردهارتمن (به انگلیسی: Fred Hartman (فقط كاربران عضو مجاز به دیدن لینک ها هستند) ) یک پل معلق در هیوستون آمریکاست که درجنوب این شهر قرار دارد.
این پل در سال ۱۹۹۵ گشایش یافت، و با طول ۴ کیلومتر ازپلهای طولانی آمریکا به حساب می‌آید .



پل لیکپانتچرترین کازوی

پل لیک پانتچرترین کازوی (به انگلیسی: Lake Pontchartrain Causeway) یک پل در لوئیزیانا آمریکاست که در شمال نیو اورلئان قراردارد.
این پل با ۳۹ کیلومتر طول، درازترین پل جهان است.








__________________











  #38  
قدیمی 23/02/2010
آواتار Alireza_Mahan23
Alireza_Mahan23 Alireza_Mahan23 آفلاین است
معاون کل تالار

مدال افتخار پادشاه ایرانی مدیر نمونه ماه مدیر نمونه ماه 

 

نام: عليرضا
جنسيت: مرد
شغل: مهندس عمران
محل سکونت: ایران-مشهد
مدرک تحصيلی: کارشناسی ارشد
پست: 19,266
سپاس: 6,580
از این کاربر 13,537 بار در 7,962 پست سپاسگزاری شده
اعتراض ها: 4
به این کاربر 8 بار در 8 پست اعتراض شده
چوب: 7,359,241
ارسال پیغام Yahoo به Alireza_Mahan23
(فقط كاربران عضو مجاز به دیدن لینک ها هستند)


bridge_engineering_substructure_design.rar
The Design of Modern Steel Bridges [2003].rar
bridge_engineering.rar
Bridge Engineering Seismic Design.pdf
Prestressed Precast Concrete Beam Bridge Design.pdf
Steel Bridge Design Handbook - Chapter 8.pdf
__________________











  #39  
قدیمی 27/02/2010
آواتار Alireza_Mahan23
Alireza_Mahan23 Alireza_Mahan23 آفلاین است
معاون کل تالار

مدال افتخار پادشاه ایرانی مدیر نمونه ماه مدیر نمونه ماه 

 

نام: عليرضا
جنسيت: مرد
شغل: مهندس عمران
محل سکونت: ایران-مشهد
مدرک تحصيلی: کارشناسی ارشد
پست: 19,266
سپاس: 6,580
از این کاربر 13,537 بار در 7,962 پست سپاسگزاری شده
اعتراض ها: 4
به این کاربر 8 بار در 8 پست اعتراض شده
چوب: 7,359,241
ارسال پیغام Yahoo به Alireza_Mahan23
۲۱ پل معروف و محبوب دنیا:

Golden Gate Bridge (San Francisco, US
پل گلدن گیت (سانفرانسیسکو ، ایالات متحده امریکا)
این پل طولانی ترین پل جهان جمعا بطول ۸.۹۲۱ فوت که در سال ۱۹۳۷ تکمیل شد شاید مشهورترین پل زمان باشد. این پل که در سان فرانسیسکو واقع است، موفقیت عظیم در ساخت و ساز زمان خود بود. در ساخت این پل رکورد ایمنی، بگونه ای بود که تنها ۱۱ کارگر در طول عملیات ساختمانی کشته شدند و ۱۱ نفر دیگر به مدد شبکه ی نوین ایمنی که در زیر کار قرار داده شده بود نجات یافتند شکسته شد، عکس هاییکه توسط هزاران توریست همه ساله از پل گرفته می شود، شاخص رنگ قرمز بواقع پرتقالی بین المللی (International Orange) بوده و در اصل این رنگ برای افزایش قدرت دید در شرایط مه آلود بودن هوا که مشابهت با منطقه ی خلیج دارد انتخاب شده، این پل با ۱.۳ میلیون دلار زیر بودجه پیش بینی شده، بمبلغ ۲۷ میلیون دلار ، ۱۰۰۰۰۰ خودرو روزانه بطور متوسط به نتیجه رسید و برای نگهداری به ۳۸ نقاش بطور فول تایم نیز نیاز دارد. تعداد ۲۶ نفر که از ارتفاع ۲۲۰ فوتی با سرعت ۷۵ مایل در ساعت و فاصله ی زمانی ۴ ثانیه به پایین پرت شده اند جان سالم بدر برده اند.

(Sydney Harbour Bridge (Sydney, Australia
پل بندرگاه سیدنی (سیدنی ، استرالیا)
در حالیکه جشن هفتادو پنجمین سال تولدش در سال ۲۰۰۷ گرفته میشد، این پل همچنان در صدر پل های جهان از نظر وسیعترین مقاطع طولانی پل در جهان ( هر مقطع ۳.۷۷۰ فوت)‌ باقی مانده است، این پل ملقب به چوب رختی است بلحاظ قوسی شکل بودنش، معمولا از پل و خانه ی اپرا که در مجاورتش واقع هست عکس برداری می شود، این زوج بعنوان یکی از بهترین تصاویر برای شهر و خود استرالیا عمل می کنند، اندازه ی بزرگترین مقطع ۱.۶۵۰ فوت که در بلندترین نقطه ی قوس ۴۲۹ فوت بالای سطح دریاست، برای ساخت این پل می بایستی ۸۰۰ خانه خراب می شدند و هزینه ی آن با ۱۴۰۰ کارگر ظرف مدت ۸ سال حدود ۱۲ میلیون دلار شد و عاقبت پل سیدنی در سال ۱۹۹۸ تکمیل شد.


(Ponte Vecchio (Florence, Italy
پنته وکیو (فلورانس ، ایتالیا)
شهر پنته وکیو یکی از مشهور ترین نقاط گردشگری ایتالیا است و عقیده بر آنست که از قدیمی ترین سازندگان پل قوسی با سنگ های یک تکه و چند تکه در جهان باشد، گرچه تکه های قدیمی تر ناتمام هم وجود دارد، این پل در اصل از چوب ساخته شده بود تا اینکه در سال ۱۳۳۳ توسط سیل منهدم شد و ۱۲ سال بعد با استفاده از سنگ دوباره ساخته شد، شهرت آن بخاطر داشتن مغازه هایش است و از هر گروهی اعم از غرفه های تجار و قصابها تا دکه های فروشندگان لوازم هنری و یادگاری (سوغاتی) را در خود جای داده است.


(Gateshead Millenium Bridge (Gateshead, England
پل هزاره و آبنمای گیت شید (شمال شرق انگلستان)
جایزه ۴۴ میلیون دلاری پل میلنیوم گیت شید، برای اولین بار و تنها پل "tilting" (کج ، شبدار ، در نوسان ) در جهان در نظر گرفته شده است، رم های هیدرولیکی در انتهای دو طرف پل این امکان را فراهم می آورد که برای عبور کشتی های کوچک پل قدری کج شود و این تکنولوژی نوین باعث گشت که طراحان آن برنده ی جایزه ی معتبر و آبرومند "Stirling Prize" برای آرشیتکت در سال ۲۰۰۲ گردند ، ۱۹۰۰۰ تن بتن در فندانسیون های به عمق ۹۸ فوت (۳۳ متر) و فولاد (میلگرد) کافی برای ساخت ۶۴ راهروی ۲ تیرکه، پل را به مقاومت در برابر برخورد یک کشتی ۴۰۰۰ تنی که با سرعت ۴ نات در حرکت است قادر می سازد.


(Erasmusbrug (Rotterdam, Netherlands
پل اراسمبورگ یا سوان (رتردام ، هلند)
ملقب به Swan (قو) بلحاظ شکل اسکلت فلزی مهار پل، ساخت این پل که به منظور ارتباط بین شمال و جنوب شهر رتردام طراحی شده بود در سال ۱۹۹۶ خاتمه یافت، برای امکان عبور کشتی ها طاق جنوبی از ارتفاع قابل توجه ۲۹۲ فوتی پل بلند باسکولی برخوردار است که در سال ۲۰۰۵ در فیلمی به نام Who Am I (من کی هستم) بنمایش در آمد که در آن هواپیماهای مسابقه ای از زیر آن پرواز کردند. ساخت این پل با بلندی ۲.۶۵۰ فوت و وزن ۶.۸۰۰ تن که در سال ۱۹۹۶ کامل شد، ۱۱۰ میلیون دلار خرج برداشت به محض آنکه پل بروی ترافیک گشوده شد معلوم شد که پل بر اثر باد تاب می خورد که این مشکل با استفاده از ابزار های تعیین کننده ی فشار هوا (دمپر) مرتفع گردید.


(Westminster Bridge (London, England
پل وستمینستر (لندن ، انگلستان)
یکی از آثار ماندگار و زیبای شهر لندن، پل وستمینستر است که از رودخانه تیمز عبور می کند و در کنار آن کاخ وستمینستر، کلیسای وستمینستر، ساعت محبوب بیگ‌بن و همچنین چرخ فلک چشم لندن قابل مشاهده است. این پل در سال ۱۷۶۹ افتتاح شد.


(Millau Bridge (Tarn Valley, France
پل میلو (دره ی ترن ، فرانسه)
این پل به ارتفاع ۱.۱۲۵ فوت (۳۳۸ متری) روی دره ی ترن در جنوب فرانسه قرار دارد که بزرگترین پل کابلی جهان محسوب می شود. بطوریکه می گویند رانندگی بر روی این پل مثل آنست که در آن احساس می کنی در پروازی. ساخت این پل که قدری بلندتر از برج ایفل است سه سال به طول انجامید و در سال ۲۰۰۴ به روی عموم باز شد، در حالیکه این پل مناظر بسیار زیبایی را از دره ی زیر خود به تصویر می کشد، همینکه مه پایین می آید دیگر مسیر مناسبی برای آنانکه قلبشان ضعیف است نخواهد بود، بطور کل طول این پل ۸.۰۷۱ فوت ( ۲.۴۲۰ متر) با طاق تکی در ۱.۱۲۲ فوتی (۳۳۶ متری) و حداکثر ارتفاع از زیر آن ۸۸۶ فوت (۲۶۶ متر) است، بطور خلاصه این پل بسیار احساس برانگیز هم بر روی کاغذ و هم در حیات واقعی می باشد، دکل پل با ۷ اسکلت فلزی به وزن ۳۶۰۰۰ تن مسقف شده است. یکسری از هفت تیرک، هر یک به بلندی ۲۹۲ فوت (۸۸ متر) و به وزن ۷۰۰ تن به اسکلتهای فلزی مربوط پیوسته اند.


(Fehmarn Belt Bridge (Baltic Sea, Germany and Denmark
پل تسمه ای فهمارن (دریای بالتیک ، آلمان و دانمارک)
هنگامیکه در سال ۲۰۱۸ پل فهمارن کامل شود امتدادی به طول ۱۱.۸ مایلی دست خواهد یافت و جزیره ی آلمانی فهمارن را به جزیره ی دانمارکی لولاند با هزینه ی تقریبی ۲.۲ بیلیون دلار متصل می سازد. نقشه های اولیه نشان می دهند که پل با ۳ اسکلت فلزی کابلی، هر کدام به طول تقریبی ۲.۳۷۵ فوت (۷۱۲)‌ متر که بوسیله ی ۴ ستون به بلندی ۹۱۸ فوت حمایت شده و دارای ۲۱۳ فوت (۶۴ متر) بلندی زیر آن می باشد خواهد بود، پل پیشنهادی جنجال هایی را توسط کاسبها و طرفداران منابع طبیعی که از لطمه خوردن به حیات وحش محل واهمه دارند بوجود آورده است.


(The Kintaikyo Bridge (Iwakuni, Japan
پل کیتایکیو (آیواکانی، ژاپن)
احتمالا یکی از پل های بد شانس در دنیا پل باز سازی شده کیتایکیو در شهر ایواکانی است که در سال ۱۶۷۳ پس از انجام هر اقدامی در جهت عبور از رودخانه ی نیشیکی Nishiki، بر اثر سیلاب های فصلی فرو ریخت. شایان ذکر است که آرک های چوبی آن تا سال ۱۹۵۰ در جای خود محکم باقی ماندند تا اینکه عاقبت طوفان آنها را هم ویران ساخت، با وجود با این نیت که دوباره ضربه نخورد، سه سال بعد پل دوباره بازسازی شد و تا امروز قابل عبور می باشد.


(Oresund Bridge (Oresund Strait, Denmark and Sweden
پل ارساند (تنگه دانمارک و سوئد)
این پل بالغ بر ۲۵۰۰۰ فوت طول و ۶۶۹ فوت ارتفاع دارد. پل کابلی ارساند برای اتصال دانمارک به سوئد در سال ۲۰۰۰ افتتاح شد، کل پل که ۸۲۰۰۰ تن وزن دارد دارای طولانی ترین مقاطع پل کابلی ( هر تکه ۱.۶۰۸ فوت) در جهان است و روزانه ۶۰۰۰۰ مسافر را با اتومبیل، اتوبوس و قطار از خود عبور می دهد. با رانندگی از دانمارک شما ابتدا از جزیره ی ساخته شده (مصنوعی) ‌Peberholm عبور کرده و در تونل ۱۳.۲۸۷ فوتی زیر دریا ناپدید شده و سپس شما را از پل ارساند، قبل از آنکه سفرتان به سوئد کامل شود عبور می دهد، عبور از پل ارساند ارزان تمام نمی شود ( بیش از ۵۳ دلار هر ماشین) گرچه برای مسافرینی که مکرر رفت و آمد می کنند تخفیف نزولی داده می شود که با توجه به هزینه ی ۳.۸ میلیارد دلاری آن تعجبی ندارد.


(T Sing Ma Bridge (Hong Kong, China
پل تسینگما (هنگ کنگ ، چین)
پل لنگری تسینگما در هنگ کنگ ششمین پل معلق در جهان است و بیش از هر پلی در کره ی زمین به ترافیک ریلی می پردازد هزینه ی ساخت این پل ۹۰۰ میلیون لار است و در سال ۱۹۷۷ پس از ۵ سال کار بی وقفه افتتاح شد. این پل دارای یک مقطع اصلی به طول ۴.۵۱۸ فوت و پس از آنکه دو جزیره ی T Sing Yi & Ma Wan را بهم وصل کرد نامگذاری شد جالب انکه ۴۹۰۰۰ تن فولاد ساختمانی در دکل پل مورد استفاده قرار گرفت، در حالیکه در هر یک از برج ها به بلندی ۶۷۵ فوت ۶۵۰۰۰ تن بتن مصرف شد. این پل جاذبه ی گردشگری ایجاد کرده و بلحاظ مناظر زیبایش معروف است، بویژه در شب هنگامیکه چراغ ها روشن می شوند تماشایی است.


(Bosphorus Bridge (Istanbul, Turkey
پل بوسفورس (استانبول ، ترکیه)
این پل گرچه از بزرگترین و طولانی ترین پل های دنیا نیست لیکن این پل بخاطر جدا سازی اروپا و آسیا مشهور است، تکه ی اصلی این پل ۳.۵۲۳ فوتی و فضای آزاد ۲۱۰ فوتی زیر آن در سال ۱۹۷۳ تکمیل گردید ، در سال ۲۰۰۵ وئوس ویلیامز، ستاره ی تنیس امریکا برای یک مسابقه ی ۵ دقیقه ای تنیس با بازیکن ترکیه ای، اپیک سنقلو، روی پل بازی کرد. اولین بازی تنیس که تا آن موقع از اینطرف و آنطرف دو قاره انجام شد.


(San Diego - Coronado Bridge (San Diego, US
پل کرونادو سندیگو (سندیگو ، ایالات متحده امریکا)
ساخت این پل در سال ۱۹۶۹ با هزینه ی ۴۷.۶ میلیون دلار با مشخصه ی ۹۰ درجه انحنا در طول ۱۱.۲۲۸ فوتی به پایان رسید. این پل در حداکثر ارتفاع ۲۰۰ فوتی برای سهولت کشتیرانی در زیر خود بنا شد، در واقع ارتفاع پل آنقدر هست که یک کشتی خالی از بار بتواند از زیر آن عبور کند، این پل نام شوم سومین پل خودکشی در آمریکا که بیش از ۲۰۰ خودکشی ثبت شده بین سالهای ۱۹۷۲ تا ۲۰۰۰ را بعد از پل گلدن گیت در سانفرانسیسکو و اورورا در سیاتل بهمراه دارد. هزینه ای برای استفاده از پل عاید نمی شد ولی از زمانیکه کیوسک های دریافت پول فعال شدند درآمد سالیانه تا ۸ میلیون دلار بالا رفت.


(Akashi Kaikyō Bridge (Kobe Naruto, Japan
پل آکاشی کایکیو (کوبه ناروتو ، ژاپن)
این پل در ژاپن پدر تمام پل های معلق در جهان بوده و با بیش از ۱۲۰۰ فوت طولانی تر از پل رده ی دومی Great Belt Bridge در دانمارک می باشد، این پل در اصل جهت جایگزینی اسکله خطرناک کوبه ایوایا که با طوفان های بیشمار صدمه دیده بود در سال ۱۹۹۸ ساخته شد. پل از آکاشی استریت عبور می کند. هزینه ی ساخت آن حدود ۴.۵ میلیارد دلار شد، آمارها درباره ی این پل گیج کننده است بطوریکه ساخت این پل با ۲۰۰۰۰۰۰ کارگر و ظرف مدت ۱۰ سال انجام گرفته، در خلال این مدت آنها ۱.۴ میلیون متر مکعب بتن ریختند، ۱۸۱۰۰۰ عدد اسکلت فلزی را اسمبل کردند، ۳۵۰۰۰۰ تن بلوک های لنگری در دو طرف انتهایی پل ساختند و کابل های فولادی کافی به درازای ۷ برابر دور دنیا را بهم وصل کردند.


(Hangzhou Bay Bridge (Zhejiang, China
پل خلیج هنگژو (ژجیانگ ، چین)
هنگامیکه در سال ۲۰۰۷ این پل افتتاح شد پل ۲۲.۴ مایلی خلیج هنگژو که استانهای شانگهای و نینگبو را بهم وصل کرد با هزینه ی ۱.۴ میلیارد دلاری دومین پل طولانی جهان بشمار میرود، این پل تا اواخر سال ۲۰۰۵ باز نشد و مرکز جنجال بزرگی بین محلی ها مبنی بر اینکه آیا نیازی به ساخت چنین پلی بوده و اینکه آیا می شد که این پل در رقابت با پل لوپو، پلی سبقت جو در شانگهای ساخته شود گردید. در این پل دو مقطع اصلی وجود دارد، یکی بطول ۱۴۷۰ فوت در تکه شمال و کوتاهتر بطول ۱۰۴۰ فوت در تکه ی جنوبی وقتیکه صحبت از طول می شود پل خلیج هنگژو دومین پل بعد از پل Pontchartrain Causeway در لوییزیانا است.



(Magdeburg Water Bridge (Magdeburg, Germany
پل مگدبرگ واتر (مگدبرگ ، آلمان)
یکی از برزگترین پل های طراحی شده در این لیست، پل مگدبرگ واتر، دقیقا همانست که اسمش است، پلی که بروی آب ساخته شد، این پل برای اتصال کانال Elbe Havel و کانال Mitteland ساخته شد که به حمل و نقل بار بین برلین و بنادر در امتداد رودخانه ی راین بدون احساس خستگی ناشی از ۷.۵ مایل انحراف مسیر و هزینه ی ۷۳۳ میلیون دلار و ۶۸۰۰۰ متر مکعب بتن و ۲۴۰۰۰ تن اسکلت فولادی ساخت این پل طولانی ۳۰۱۰ فوتی به پایان رسید.



(Brooklyn Bridge (New York City, US
پل بروکلین (نیویورک ، ایالات متحده امریکا)
پل بروکلین از قدیمی ترین پل های معلق در شهر نیویورک امریکا است که بروکلین و منهتن را به هم متصل می‌کند. این پل با طول ۱۸۲۵ متر از قدیمی‌ترین پل های مدرن دنیا به حساب می‌آید. پل بروکلین طی سالهای ۱۸۷۰ تا ۱۸۸۳ میلادی توسط یک مهندس آلمانی تبار به نام "جان آئوگوستس روئبلینگ" طراحی و ساخته شد. او در زمان ساخت پل بر اثر حادثه ای جان باخت و فرزندش، واشنگتن مسئولیت ادامه کار را بر عهده گرفت اما وجود مشکل گفتاری مانع آن شد که او بتواند کار را ادامه دهد. این وضعیت، "امیلی وارن روئبلینگ" همسر معمار اصلی را واداشت تا برای چندین سال مسئولیت انتقال دستورات واشنگتن را به کارگران بر عهده گیرد. پیچیدگی سازه پل که جزیره منهتن را با همسایه اش، محله بروکلین مرتبط می سازد، موجب گشت بیش از ۲۰ نفر در طول ۱۳ سال زمان ساخت آن، جان خود را از دست بدهند. هزینه ساخت پل بیش از ۱۵ میلیون دلار بود.



(Nanpu Bridge (Shanghai, China
پل نانپو (شانگهای ، چین)
این پل از فولاد، کابل و بتون و تیرهای کامپوزیت ساخته شده است و در شانگهای چین قرار دارد. مجموع طول پل ۸۳۴۶ متر با دهانه ۴۲۳ متر از مرکز، رتبه سوم در میان پل های کابلی جهان را داراست و با توجه به مارپیچی بودن روش ساخت، این پل در رده ی طولانی ترین پل های دنیا قرار دارد. ارتفاع برج ۱۵۰ متر با دو خط از کابل های قوی به حالت تعلیق پل است.



(Richmond Bridge (London, England
پل ریچموند (لندن ، انگلستان)

ریچموند قدیمی ترین پل در رودخانه تیمز لندن است.



(Hong kong, Zhuhai, Macao Bridge (South East Asia
پل ارتباطی هنگ کنک ، ماکائو (جنوب شرق آسیا)
این پل هنوز در مرحله ی پیشنهاد است، اما چنانچه چراغ سبز بگیرد و قابل اجرا شود پل ۱۸ مایلی دو طرفه ۳ باندی عبور اتومبیل، فاصله ی زمانی عبور از جاده ی بین هنگ کنگ و ماکائو را از ۴.۵ ساعت فعلی به ۴۰ دقیقه کاهش خواهد داد، ساخت این پل همچنین اتصال بین دو جزیره ی مصنوعی بوسیله ی یک تونل در زیر دریا جهت کمک به ایجاد گذرگاه امن کشتیرانی را شامل می شود.
منیع : (فقط كاربران عضو مجاز به دیدن لینک ها هستند)
__________________










کاربر زیر بخاطر پست مفید از Alireza_Mahan23 سپاسگزاری کرده اند :

  #40  
قدیمی 01/07/2010
آواتار Alireza_Mahan23
Alireza_Mahan23 Alireza_Mahan23 آفلاین است
معاون کل تالار

مدال افتخار پادشاه ایرانی مدیر نمونه ماه مدیر نمونه ماه 

 

نام: عليرضا
جنسيت: مرد
شغل: مهندس عمران
محل سکونت: ایران-مشهد
مدرک تحصيلی: کارشناسی ارشد
پست: 19,266
سپاس: 6,580
از این کاربر 13,537 بار در 7,962 پست سپاسگزاری شده
اعتراض ها: 4
به این کاربر 8 بار در 8 پست اعتراض شده
چوب: 7,359,241
ارسال پیغام Yahoo به Alireza_Mahan23
شناخت رفتار سازه‌ پل و برآورد نيروهای وارد بر آن:

‌مقدمه:
در سال‌های اخیر شناخت از رفتار سازه‌ها و برآورد نیروهای وارد بر آنها به خصوص در هنگام زلزله از پیشرفت قابل ملاحظه ای برخوردار بوده است. جامعه مهندسی کشور ما نیز در بخش مشاوره (طراحی سازه ها) از این خوان دانش به مدد حضور آیین نامه‌های طراحی به روز و ابزارهای قدرتمند نرم‌افزاری وارداتی، بهره‌مند شده است. این موضوع در مراحل اول و دوم مطالعات طراحی به خوبی رخنمون داشته اما در اجرا متاسفانه فاصله قابل توجهی میان دانش نیروهای بخش طراحی با دانش نیروهای فنی دستگاه های نظارتی و پیمانکاران به وجود آمده که خود عامل مهمی در برآورده نشدن کیفیت مناسب در هنگام اجرای سازه‌ها شده است. البته این نکته نیز دور از ذهن نماند که گاهی اوقات نیز فاصله مذکور به طور معکوس و به دلیل عدم آگاهی بخش طراحی از روش‌ها و ظرفیت‌های موجود در صنعت ساخت و ساز به طرح‌هایی با قابلیت های اجرایی پایین ختم گردیده است. مقاله حاضر به چند نکته از هر دو حیطه مورد اشاره در ارتباط با طراحی و اجرای پل‌های بتن مسلح می پردازد.


قطع پیوستگی آرماتور دورپیچ در ناحیه تشکیل مفصل خمیری در پای ستون‌های پل‌

برای استهلاک انرژی زلزله آیین نامه ها اجازه می دهند نواحی از پیش تعیین شده‌ای در سازه‌ها دچار تغییر شکل‌هاییری با حفظ سختی، مقاومت و شکل‌پذیری در چرخه های رفت و برگشتی امواج زلزله گردند. در پل‌ها این نواحی بطور معمول در زیر سازه (پایه ها) انتخاب می گردند. بطور خاص در ستون‌های بتنی پایه‌ها این تغییر شکل‌ها در پای ستون‌ها و در طول ناحیه تشکیل مفصل خمیری اتفاق می افتند. به منظور تامین شکل پذیری لازم در مناطق با خطر لرزه‌ای زیاد، آیین نامه‌ها همپوشانی overlap آرماتورهای دور پیچ در ناحیه تشکیل مفصل خمیری در پای ستون را ممنوع کرده‌اند. اما در شکل ذیل مشاهده می گردد که جدا از مساله همپوشانی، پیمانکار برای سهولت اجرا و به دلیل عدم آگاهی از این نکته اصولی، حتی آرماتورهای دورپیچ را هنگام اجرای فونداسیون درست در پای ستون قطع نموده است. انقطاع ایجاد شده باعث کاهش تنش‌های محصور کننده در پای ستون شده و عامل بسیار مهمی در کاهش قابل توجه شکل پذیری و ناپایداری پایه پل در هنگام زلزله خواهد بود.



وصله آرماتور طولی در ناحیه تشکیل مفصل خمیری در پای ستون‌های پل‌

بر اساس فلسفه مورد اشاره در قسمت قبل و مطابق مقررات آیین نامه ها وصله آرماتور طولی ستون فقط در ناحیه نیمه میانی ارتفاع ستون مجاز می باشد. لازم به توضیح است که حداقل طول وصله 60 برابر قطر آرماتور طولی بوده و باید ضوابط دورپیچی ویژه برای آن اعمال گردد. متاسفانه در شکل زیر مشاهده می گردد که وصله آرماتور دقیقاً در ناحیه غیر مجاز ستون قرار گرفته و آرماتورهای دورپیچ نیز در فونداسیون قطع شده‌اند. موضوع اخیر از مهمترین عوامل خرابی‌هاییا می باشد.




عدم تامین طول لازم برای نشیمن تیرهای بتن مسلح پیش ساخته عرشه پل‌





جانمایی نادرست نئوپرن در زیر تیرهای پیش ساخته عرشه پل‌

مطابق ضوابط آیین نامه ها، محور نئوپرن‌های چهارضلعی به دلیل جلوگیری از اعمال فشار غیر یکنواخت خارج از محور باید بر محور تیر منطبق بوده و اضلاع آن به موازات اضلاع تیر باشند. متاسفانه در شکل زیر مشاهده می گردد که هر دو مورد فوق در هنگام جانمایی نشیمن‌ها رعایت نشده و نئوپرن‌ها با خروج از مرکزیت قابل توجه نصب شده‌اند. این موضوع منجر به کاهش عمر مفید بهره‌برداری از نئوپرن و ایجاد تنش‌های قابل توجه در انتهای تیر می گردد.




عمل آوری نامناسب بتن عرشه و ایجاد ترک‌های انقباضی‌

در برخی موارد مشاهده می گردد که پیمانکاران برای عمل آوردن بتن دال عرشه از پهن نمودن گونی و مرطوب کردن آن استفاده می نمایند. در صورت وزش باد و با توجه به وجود منافذ باز در سطح گونی، در عمل رطوبت آب به سرعت تبخیر شده و در نتیجه ترک های سطحی فراوانی در سطح دال ایجاد می گردند. شکل زیر به وضوح این مساله را نشان میی مذکور باعث نفوذ مواد خورنده به سطح آرماتورهای دال با پوشش کم شده که به دنبال آن خوردگی آرماتور، پکیدن بتن اطراف آن و کاهش عمر مفید بهره‌برداری از پل به وقوع می پیوندد. به عنوان یک راه حل پیمانکاران می توانند بجای گونی یا همراه آن از نایلون های پلاستیکی استفاده نمایند به طوری که بخار آب در زیر پلاستیک محبوس شده و باعث عمل‌آوری بتن دال عرشه گردد. به علاوه عملیات بتن‌ریزی زمانی انجام شود که سرعت باد کم بوده و تابش شدید خورشید وجود ندارد. دهد.




اجرای نامناسب درزهای انبساط‌




اجرای نامناسب نرده های پل‌

نرده های پل ها به طور معمول دارای پایه های فولادی جعبه ای شکل در فواصل معین می باشند که توسط صفحه ستون به بتن پیاده رو اتصال می یابند. در شکل زیر مشاهده می گردد که به دلیل عدم پیش بینی فاصله مناسب بین سطح بتن نهایی و صفحه ستون به منظور گروت‌ریزی و تنظیم آن، نصب پایه دچار مشکل شده و پیمانکار مجبور شده است از صفحات پوششی پرکننده برای تامین فاصله استفاده نماید. این موضوع باعث کاهش مقاومت پایه فولادی در هنگام ضربه وسایل نقلیه می گردد.


یکی از مسئله سازترین قسمت‌های پل‌ها در زمان بهره‌برداری، درزهای انبساط پل می باشد. هر یک از ما روزانه چندین بار ضربه وارد بر اتومبیل خود را در هنگام عبور از همین درزها تجربه می نماییم. در شکل زیر یک نمونه درز انبساط در حال اجرا نشان داده شده است. زمان اجرای درزهای انبساط بطور معمول همزمان با بتن ریزی دال می باشد، در این هنگام با توجه به دقت کم لحاظ شده در اجرای درز انبساط و همچنین عدم وجود آسفالت پوششی، رویه درز و بتن اطراف آن دارایی بلندی هایی خواهد شد که در هنگام اجرای آسفالت امکان اصلاح آنها وجود نخواهد داشت. لذا توصیه می گردد محدوده درز انبساط تا زمان اجرای آسفالت پل، بتن ریزی نشده و در هنگام اجرای آسفالت با تنظیم مناسب درز و آنگاه ریختن بتن مرحله دوم از هم تراز بودن سطح درز و آسفالت اطمینان حاصل گردد. به علاوه از اجرای درزهای فولادی با پروفیل و ورق پوششی به دلیل شکست جوش‌های اتصالی و ایجاد مشکلات فراوان احتراز شده و به جای آنها از درزهاییکی مسلح استفاده شود. پست لاست

در پل‌های متشکل از عرشه با تیرهای بتن مسلح پیش ساخته در کشورمان استفاده از تکیه گاه نئوپرن الاستومری براییمن تیرها در محل کوله‌ها و پایه ها بسیار رایج می باشد. انتظار می رود در هنگام زلزله، تغییر مکان طولی پل به دلیل عدم وجود میرایی در این نوع نشیمنگاه‌ها قابل توجه باشد. لذا آیین نامه‌ها مقرر می‌دارند که طول نشیمن عرشه بر روییه پل از حداقل میزانی برخوردار باشد. این مهم به دلیل جلوگیری از سقوط عرشه از روی کوله و پایه به داخل دهانه می‌باشد. متاسفانه در شکل زیر مشاهده می‌گردد که طول مذکور رعایت نشده است. در حالی‌که این موضوع در هنگام تهیه نقشه های اجرایی و زمان اجرای کوله به راحتی و با تامین براکت در دیواره کوله امکان پذیر بوده است.


به نقل از وبلاگ نوید مجابی
__________________











آخرین ویرایش 01/07/2010 توسط : Alireza_Mahan23 در ساعت 13:45
گفتگو قفل شد

سایت های اجتماعی

برچسب ها
(مرجع), مربوطه, مسائل, ها, پل



کاربران در حال دیدن تاپیک: 1 (0 عضو و 1 مهمان)
 

(نمایش-همه کاربرانی که این تاپیک را مشاهده کرده اند : 51
Alireza_Mahan23, aliyousefi, amir ali 1, amir_c, asasasa, bahram-n, bijansamani, chakavak55, civilator, die7007ad, easy-en, elena68, ghoghnoos1, Haji Ahmad, hemsvt, hosein..c, jackbill4, jafar ahjanai, jafar13901, lordegan, mahdi_n99, maxxxxx, mh555999, mhj1370, mohammad18, mohandesmehran, morfi1982, moslem66, naghiloosajad, nezam_g, pariman-rahsaza, parniyan69, pasha007, pesarirani25, pourya_775ft, saeed23, saeedyarizade, sedghiali, seyed5963, seyedein, shabe mahtab, shimahaghighy, takabi, tiztiz, فروغ نظری, مهفا, vahid90, [arsrahsaz, اسپرغم, دانشیان, شهاب1368
ابزارهای تاپیک جستجوی این تاپیک
جستجوی این تاپیک:

جستجوی پیشرفته

قوانین ارسال
شمانمی توانید تاپیک جدید ارسال نمایید
شمانمی توانید پاسخی ارسال نمایید
شمانمی توانید پیوست ارسال نمایید
شمانمی توانید پست های خود را ویرایش نمایید

کد بی بیفعال است
شکلک ها فعال است
کد [IMG] فعال است
کدهای HTML غیر فعال است

مراجعه سریع


زمان محلی شما با تنظیم GMT +4.5 هم اکنون 14:21 میباشد.


Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.
Copyright © 2006 - 2014 ParsiKing. All Rights Reserved to Parsiking Group
دامین های زیر جهت ارائه خدمات در مالکیت سایت پادشاه ایرانی می باشد
parsiking.com - parsiking.biz - parsiking.org - parsiking.net - parsiking.in - parsiking.ir
vBCredits v1.4 Copyright ©2007 - 2008, PixelFX Studios